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Summary 

Stratigraphic correlation is well recognized as one of the essential processes, providing information regarding 

stratigraphic and compartmentalization in a reservoir. It becomes a starting point for subsurface evaluation 

processes ranging from reservoir characteristics to reserves and resources estimation and economic evaluation. It 

has always been a focus area in numerous traditional and modern research. Several practices approach 

stratigraphic correlation, including direct tracing from outcrop, relating geological markers, and comparing the 

organism characteristics. This work focuses only on one of the traditional work processes, utilizing geological 

markers to identify stratigraphic correlation. This work primarily studies the potential adoption of data analytics 

and machine learning in identifying geological markers and connecting them to derive stratigraphic correlation. 

Well logging information is the primary data source to interpret geological markers. Determining markers was 

previously done based on the specific well-log characteristics that are rare and uniquely identified in the 

geological area. It usually takes tremendous effort to find a particular marker from well logging information, 

especially when many wells scale up the works. Deriving computer-assisted technology with machine learning 

becomes a key enabler in accelerating and enhancing the business process. The machine learning assisted system 

has been trained with the entire geoscientists’ marker interpretations. 

The system consists of two connected machine-learning models. The first model, designed as a multi-class 

classification, identifies the geological markers using well-logging information. The first model’s predicted 

markers are then fed as an input to the second model, designed as a binary classification. It analyzes the 

relationship between markers in the same wellbore. Subsequently, the predicted markers resulting from two 

connected models are linked between two or more wells in the same region to create the stratigraphic correlation. 

Aiming to determine the practicality and potential adoption from one to another, this study implements the same 

model concept with two different sets of data, two fields in the Gulf of Thailand. The system has been proven 

successful in model development and deployment and has achieved nearly human performance levels. 

Introduction 

In recent decades, the new asset class, unconventional resources, has been developed to fulfill an increasing need 

in energy demand. Several activities have been executed in the energy industry, including exploring new oil and 

gas areas, delineating the additional reservoirs in an existing field, and developing new wells to optimize field 

production. These activities lead to a significant increase in the amount of data and effort to complete all tasks in 

the limited time. Stratigraphic correlation is one of the essential processes ranging from an exploration phase to 

asset development. It provides information regarding stratigraphic and compartmentalization in a reservoir 

(Howell 1983; Olea and Davis 1986; Waterman and Raymond 1987; Bakke and Griffiths 1989; Fang et al. 1992; 

Luthi and Bryant 1997). 
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Stratigraphic correlation is one of the focus areas in numerous traditional and modern research. Rudman and 

Lankston (1973), Mann and Dowell Jr (1978) identified a stratigraphic correlation, also called correlation, using 

the cross-correlation technique. Smith and Waterman (1980), Anderson and Gaby (1983), Howell(1983), 

Waterman and Raymond (1987), Fang et al. (1992), Edwards et al. (2018), Behdad (2019), and Le et al. (2019) 

determined a similarity between two well-log sequences using the dynamic time warping, also called dynamic 

waveform matching technique. Zimmermann et al. (2018), Brazell et al. (2019), Bakdi et al. (2020), Tokpanov et 

al. (2020), and Parimontonsakul (2021) focused on applying machine learning models in stratigraphic correlation 

identification. This work aims to address the correlation tasks through the geoscientists’ and data analytics’lens, 

synchronizing with the business workflow related to the stratigraphic correlation. 

This work presents the use of data analytics and machine learning models to assist or automate the stratigraphic 

correlation tasks. It focuses only on the traditional work process using a geological marker and explores the 

potential adoption of data analytic and machine learning models to enhance the process. The same model concept 

is applied to two fields in the Gulf of Thailand to determine the practicality and potential adoption from one to 

another. 

As a result, the models nearly achieve human performance, supporting the idea of integrating the data analytic 

workflow into the business workflow. The model results also emphasize the importance of a thorough 

understanding of the work process through the successful implementation of two models connected in series to 

improve the model performance. In addition, the two connected models may not easily achieve without the ability 

to adjust or tweak the model setup, emphasizing the significance of data analytic understanding. 

Stratigraphic Correlation 

Several kinds of information are required to identify stratigraphic correlation. For example, a similarity in the 

fossil content can be interpreted as correlative since it presents the same organism characteristics, which infer the 

same age of the rock units. A similarity in the unique lithology sequences can also be interpreted as correlative 

since it derives a distinct lithology sequence in the geological area. Given the above examples, this study 

elaborates that geologists can derive a stratigraphic correlation through geological information: a similarity or 

specific characteristics between that information, such as lithology, organisms, and a geological period. 

  Well logging is one of the primary data acquisition processes, providing lithology information, petroleum 

reservoirs, and petrophysical properties. This information is sufficient to imply a stratigraphic correlation. One of 

the traditional interpretations that geoscientists usually start with is a marker. A marker, also called a geological 

marker or horizon, is defined as a rare and uniquely identified lithology sequence that one can map over a 

geological area (Neuendorf et al. 2011). Connecting the same marker exposed in several wells can imply a 

stratigraphic correlation because it provides the connection of the unique lithology sequence in the area. However, 

the correlation interpretation does not guarantee that those correlative reservoirs always have pressure 

communication since several unknown factors can contribute to compartmentalization, such as fault and 

unconformity (Parimontonsakul 2021). 

  As geologists can use well-logging information to interpret a marker, this study proposes that the same process 

can be assisted by a data analytic process such as machine learning or any computational process. If geologists’ 

marker interpretation is available, the classification model can be implemented using well-logging information as 

independent variables or features and labeled marker information as the target predicted values. A clustering 

model can execute when the only available information is the well-logging data, implying that the machine 

learning model will provide the group of well-logging patterns, aka pseudo markers (Parimontonsakul, 2021). 

This study focuses only on the classification model where geologists’ marker interpretation is available in this 

work. This study applies the work process to two fields in the Gulf of Thailand to determine the use case and 

application in the actual field data. Two areas are selected as it provides the evidence to demonstrate the 

applicability of the workflow to other fields. 
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Analytical Problem Formulation 

As previously mentioned, marker identification is an essential process in stratigraphic correlation. This section 

elaborates on the analytical problem formulation and the model implication. This study intends to focus on only 

one analytical formulation, Convolutional Neural Network, to demonstrate the implementation of the work 

process in the actual field data. 

  Convolutional Neural Network (CNN) model has become predominant in the image recognition and computer 

vision research areas, including several architectures aiming to achieve higher accuracy and more efficient 

calculations (Krizhevsky et al. 2012; Krizhevsky et al. 2017; Wang et al. 2020; Parimontonsakul 2021). Due to 

the limited computational capability, this study employs one of the simplest and the most efficient architectures, 

MobileNets, to identify the markers. Parimontonsakul (2021) proposes one transformation of well-logging 

information to the image approach. The primary concept is that one column vector represents one section of a 

well-log sequence, while well-log interval and compression factors, implying zoom-in and out of an image, are 

added to the well-log sequence. This process creates additional column vectors to the same well log series. He 

initially proposes to apply eight factors to the same well log sequence, resulting in eight vectors of an image, 

defined as a pad. The same process is used in other well-log sequences to create the complete image. 

  Applying the same concept, this study can make several well-logging images by changing the well-log interval 

and compression factors, as illustrated in Figure 1. The well-log series from left to right are the gamma-ray log, 

resistivity log, neutron log, and density log in the sandstone scale. The transformation of a well-log to an image 

is demonstrated. Figure 2 presents the MobileNets architecture. The transformed well log image is set up as an 

input layer in the CNN model, while the output layer is the geoscientists’ marker interpretations. Since there is 

more than one marker in an output layer, the problem is set up as a multi-class classification problem. 

  As the reader is aware that the transformed image consists of only a well log sequence, there is no additional 

information regarding well location, well depth, or any other information useful in identifying the geological 

marker. This study introduces two approaches to resolve the concern. The first approach is to create a placeholder 

column vector in the image as a place to input supplemental information such as well location and well depth. 

This method provides the simplest solution since it does not require any adjustment to the MobileNets architecture. 

The second approach is to include additional data input connecting directly to the fully connected layer. In this 

case, the modified MobileNets architecture needs to be constructed to add extra information to the CNN model. 

The two approaches are illustrated in Figure 3. In this work, the first approach is applied for simplicity in model 

creation, but this does not imply that the first approach is the best. As a result, this study proposes the modified 

MobileNets architecture as demonstrated in Table 1. 

This study addresses this issue by creating an additional machine learning model that explores the probability 

of correctness in the marker prediction given the nearby marker prediction information. This process can be 

viewed simply as the nearby marker prediction should be similar, or if the marker is alphabetically sorted from 

shallow to deep, the nearby marker prediction will also be alphabetically sorted in the same manner. There are 

several techniques to formulate this kind of model. One of the approaches is to formulate it as a classification 

problem, where independent variables are the predicted markers from the CNN model, including predicted marker 

depth and other mathematical aggregation such as min, mean, mode, and a max of the numerical values, and the 

correctness of the marker prediction given the depth threshold as the target predicted values.  
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Figure 1—The well log images for MobileNets (Parimontonsakul 2021). 
 

 
Figure 2—The MobileNets architecture (Parimontonsakul 2021). 
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(a)  

 
(b)  

 

Figure 3—The modified MobileNets architecture alternative for additional data input (modified from 

Parimontonsakul 2021). (a) The modified MobileNets architecture added additional column vector; (b) The modified 

MobileNets architecture added additional data input to fully connected layer. 
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖 =
𝑡𝑝𝑖

𝑡𝑝𝑖+∑ 𝑓𝑝𝑖𝑗𝑗
 ,.....................................................................................................................................(1) 

𝑅𝑒𝑐𝑎𝑙𝑙𝑖 =
𝑡𝑝𝑖

𝑡𝑝𝑖+∑ 𝑓𝑛𝑖𝑗𝑗
 ,...........................................................................................................................................(2) 

𝐹1-𝑠𝑐𝑜𝑟𝑒𝑖 =
2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖×𝑅𝑒𝑐𝑎𝑙𝑙𝑖

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖+𝑅𝑒𝑐𝑎𝑙𝑙𝑖
 ..........................................................................................................................(3) 

 
Table 1—The proposed modified MobileNets architecture. 

Layer Type Output Shape 

input Input Layer (512, 36, 1) 

scal_input Scaled Input Layer (256, 32, 1) 

conv1 Conv2D (128, 16, 32) 

conv1_bn BatchNormalization (128, 16, 32) 

conv1_relu ReLU (128, 16, 32) 

conv_dw_1 DepthwiseConv2D – BatchNormalization - ReLU (128, 16, 32) 

conv_pw_1 Conv2D – BatchNormalization - ReLU (128, 16, 64) 

conv_dw_2 DepthwiseConv2D – BatchNormalization - ReLU (64, 8, 64) 

conv_pw_2 Conv2D – BatchNormalization - ReLU (64, 8, 128) 

… … … 

conv_dw_13 DepthwiseConv2D – BatchNormalization - ReLU (8, 1, 1024) 

conv_pw_13 Conv2D – BatchNormalization - ReLU (8, 1, 1024) 

avg_pool GlobalAveragePooling2D (1024) 

fc FullyConnected (1024, 14) 

output Output Layer (14) 

 
Table 2—The 3-class classification problem confusion matrix. 

  True Condition 

  Condition A Condition B Condition C 

Predicted Condition 

Condition A 𝑡𝑝𝑎 𝑓𝑝𝑎𝑏 = 𝑓𝑛𝑏𝑎 𝑓𝑝𝑎𝑐 = 𝑓𝑛𝑐𝑎 

Condition B 𝑓𝑝𝑏𝑎 = 𝑓𝑛𝑎𝑏 𝑡𝑝𝑏 𝑓𝑝𝑏𝑐 = 𝑓𝑛𝑐𝑏 

Condition C 𝑓𝑝𝑐𝑎 = 𝑓𝑛𝑎𝑐 𝑓𝑝𝑐𝑏 = 𝑓𝑛𝑏𝑐 𝑡𝑝𝑐 

Model Development and Deployment 

Figures 4 and 5 demonstrate two processes in model development and deployment for each model. The first 

process focuses on the first model, identifying the geological markers, development and deployment, while the 

second process focuses on the second model, analyzing the relationship between markers in the same wellbore, 

development, and deployment. 
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During the first model development, called as marker prediction model, the marker and non-marker data are 

required as input to the model. The imbalanced dataset from significantly different amounts of data between 

marker and non-marker needs to be addressed. This work applies the simple sampling approach to reduce the 

non-marker data to reduce the imbalanced dataset and control the computational time and memory to stay within 

the acceptable range. 

During the marker prediction model deployment, each interval of the well-log sequence is evaluated with the 

trained machine learning model defined in the previous step. The step size between each evaluation is a major 

concern. If the step size is too small, the number of function evaluations will be high, leading to higher 

computational time and vice versa. In addition, if the step size is too big, it also negatively impacts the model 

performance of the second process, implying that the second process will be less accurate. This study does not 

recommend any concrete solutions that always demonstrate the best step size and suggest further study in this 

area as needed. 

In the second model, named the marker association model, development and deployment process are 

straightforward as there is no other process before the model deployment, as demonstrated in the marker 

prediction model. 

Two fields in the Gulf of Thailand, classified as fluvial depositional environments, are evaluated (Table 3). 

Geoscientists can identify the geological markers in both fields as the initial set of data to perform the correlation 

tasks. However, the markers identified by each area are not the same. Since each location may have a different 

set of marker interpretations and originations, this study intends to develop and deploy the model in its area to 

honor its data distribution. Field A and Field B are trained and validated separately with the same model concept 

to demonstrate that the same process can apply in other locations without any adjustment. Less than half of the 

field data have been trained due to limited computational performance, while the models have been tested in all 

remaining data. 

 

 
 

Figure 4—The training and testing dataset definition. 
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Figure 5—The two connected models architecture. 

 

Table 3—The validated metrics of the MobileNets model in two field in the Gulf of Thailand. 
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M 0.8370 0.9743 0.9004 0.8477 0.9905 0.9136 

N 0.9013 0.9211 0.9111 0.8826 0.9259 0.9037 

O 0.9600 0.9796 0.9697 0.9506 0.9647 0.9576 

NA 0.8162 0.7218 0.7661 0.7963 0.7176 0.7549 

macro avg 0.9183 0.9393 0.9280 0.9125 0.9413 0.9267 
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Discussion 

The marker prediction models, the CNN models, yield an incredible performance. The trained model in fields A 

and B in the Gulf of Thailand presents comparable performance. The F1-score metric reaches up to 0.95 in most 

markers except the markers L, M, N, O, and NA in field A and field B. This result demonstrates that the same 

model concept can be applied in other fields without further adjustment, emphasizing that only the training data 

of the target field is required to implement the same model concept in other areas. The trained and validated loss 

function evaluation is demonstrated in Figure 6. 

 

 

 

Figure 6—The loss function evaluation in trained and validated data set in field A. 

 

Figure 7 demonstrates that applying the marker prediction model alone in the deployment phase confirms the 

correlation chaos without the marker association model, as presented as the solid light blue line. Integrating the 

marker association model deems necessary as it significantly reduces the number of incorrect correlation 

identifications, as demonstrated by the solid blue line. It also indicates that the marker association model is 

important in the process as long as the marker prediction model’s precision scores do not reach the perfect score. 

The marker association model will complement and help reduce the marker prediction model’s error. It also 

hypothesizes further optimization in the marker prediction model to provide a higher recall score so that the model 

tended to interpret more markers and applied the marker association model to remove the incorrectly predicted 

markers. However, this optimization idea has not been tested yet. 
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(a) 

 

 
(b) 

Figure 7—The stratigraphic correlation results from the models, the solid light blue line represents the results from 

the marker prediction model, The solid blue line represents the results from the marker association model. (a)The 

stratigraphic correlation results from the marker prediction model, elaborating few incorrect correlation 

identifications from connecting identical markers;(b)The stratigraphic correlation results from the marker 

prediction and marker association model, presenting an improved correlation identifications by complementing the 

error from marker prediction model. 
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Conclusions 

This work introduces a significant step toward the automated stratigraphic correlation using machine learning 

models in the marker horizon determination problem. The CNN model has been proven successful in identifying 

the marker horizon in two fields in the Gulf of Thailand. The model performs as it designs and nearly achieves 

human performance. However, the CNN model alone does not perform as well as it establishes during the model 

deployment phase. This concern has been proven and the additional machine learning models are connected in 

series to improve the model performance. The model results highlight a significant improvement in automated 

stratigraphic correlations. 

Additionally, the model concept is proven to deploy in two fields in the Gulf of Thailand without further 

adjustment, emphasizing the potential adoption of the model concept from one area to another. Given the model 

concept adoption, the rapid growth in digital transformation applying machine learning and other data analytics 

in the business workflow will not be a far future. This study concludes that data analytics can integrate with the 

business process to improve accuracy in stratigraphic correlation and assist geoscientists throughout the process. 

A thorough understanding of stratigraphic correlation and data analytics empowered by machine learning models 

is non-trivial and demonstrates a step toward a fully automated system. 

Nomenclature 

CNN = Convolutional Neural Network 

FN = False Negative 

FP = False Positive 

TP = True Positive 
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