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Abstract
With the development of EOR technology, CO2 flooding was a very promising method to improve the
recovery of conventional and unconventional oil reservoirs. MMP (minimum miscibility pressure ) was
one of the important parameters of the CO2 flooding, and the use of an artificial intelligence algorithm
can accurately predict the MMP, which was important to evaluate the effect of CO2 flooding development
in the reservoir.
This work presents methods to automatically find optimal parameter settings for machine learning

model by using an evolutionary algorithm. In this paper, 195 sets of experimental data of MMP were
collected and screened from a large amount of literature for model establish, and sensitivity analysis was
performed with the Pearson's method for feature selection. Then, five machine learning algorithms were
used for regression and comparison. Finally, a particle swarm optimization algorithm was used to
optimize the parameters of the machine learning model with best performance. The accuracy of the
training set obtained by the hybrid model was 99.9% and the accuracy of the test set was 97.6%. It
indicated that the hybrid model are valid and accurate, and it can be used for MMP prediction in both
laboratory and actual field.

Introduction
CO2 flooding is considered to be one of the most effective EOR methods, particularly in developing light
oil reservoirs. Depending on the injection pressure, there are three classification of CO2 flooding,
including miscible gas injection, partial miscible gas injection, and immiscible gas injection. The
displacement efficiency of reservoir oil by CO2 flooding is highly pressure dependent and miscible
displacement is only achieved at pressures greater than a certain minimum pressure, termed the minimum
miscibility pressure (MMP). The MMP is defined as the lowest pressure for which a given injected gas
composition can develop miscibility through a multi-contact process with a specific reservoir at reservoir
temperature. MMP is completely independent of reservoir heterogeneity, but it is a strong function of oil
composition, composition of the injected gas, and reservoir temperature.
The methods used to predict the MMP under gas injection, miscible gas injection, or a dry gas cycling

scheme, include lab tests, empirical correlations, equation of state (EOS) methods, and data-driven
approaches. Specific lab test used to determine MMP include the swelling test, slim-tube test, rising
bubble test, core flood, and other tests. Yellig and Metcalfe (1980) first proposed the experimental
method to determine the CO2-crude oil MMP through a thin tube. In the experiments, CO2was injected at
a specific rate into a thin tube at different pressures to obtain a recovery-pressure relationship curve to
determine the MMP. The rising bubble apparatus method (RBA) was proposed to determine MMP, in
which an oil sample of a certain height is injected into a vertically placed visible high-pressure glass tube,
followed by the injection of gas from the bottom of the glass tube at a constant rate, and MMP was
determined from the shape of the bubbles and the distance they travel. Harmon and Grigg (1988)
proposed a experiment to directly measure the relationship between the density and pressure of the
injected rich gas phase, the MMP of the gas and crude oil miscible phase was determined by using the
gas-oil dissolution characteristics.
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The empirical correlations are a simple and fast means to determine MMP. Various widely used
correlations are outlined as follows. Orr and Silva (1987) proposed an empirical formula to determine the
MMP for pure CO2 and impure CO2/crude oil system. The EVP correlation presented by Orr and Jensen
(1986) can determine the MMP for low-temperature reservoirs (T<120°Ϝ). Yellig and Metcalfe (1980)
proposed a correlation to forecast the CO2 MMP with the temperature as the only correlating parameter
from their experimental study. Alston et al. (1985) derived an empirical correlation to estimate the MMP
for pure or impure CO2/crude oil systems. Cronquist (1978) proposed an empirical formula to
characterizes MMP as a function of reservoir temperature, molecular weight of the oil pentanes-plus
fraction, and mole percentage of methane and nitrogen.
The EOS methods were established based on the theory of phase equilibrium of the system and was

mainly used to map the relationship between the phase behavior of the CO2 and crude oil system and the
miscible function, and thus to obtain MMP for the system (Yellig and Metcalfe 1980; Holm 1987;
Mungan 1981; Cronquist 1978). The existing EOS used to calculate MMP were the Peng-Robinson EOS
(PR-EOS) (Silva and Orr 1987; Orr and Silva 1987; Alston et al. 1985), Nasrifar-Moshfeghian EOS (NM-
EOS) (Nasrifar and Moshfeghian 2001), and the improved statistical fluid theory EOS (SSAFT-EOS)
(Zhao et al. 2006). The EOS method mainly uses phase simulation technique to investigate the influence
of injected gas on the properties of crude oil. The parameters of EOS were tuned by fitting the PVT
experimental data to establish a phase model that conforms to the real fluid, and MMP of the oil and gas
system is calculated by simulating the multi-stage contact experiment process (Al-Ajmim et al. 2011).
The EOS method can establish a phase model that fits the flow state characteristics of oil and gas
multiphase fluids, so it can accurately characterize the phase behavior of real reservoir fluids and estimate
the physical parameters.
The lab measurements have a high accuracy, but it is very time consuming and expensive. The

empirical correlations obtained under specific experimental conditions are often limited by failure to
satisfy requirements. EOS methods usually require a large amount of preliminary experimental data to fit
the PVT parameters.
Recently, artificial intelligence methods have become essential techniques for MMP prediction. They

learn high-level features of PVT data using structures composed of several nonlinear transformations to
classify large and complex data. The significant advantages of artificial intelligence methods are the high
prediction accuracy and the ability to process large amounts of data in parallel. With the development of
artificial intelligence techniques, researchers can build and apply the required models in different fields.
Table 1 shows the research related to machine learning algorithms for MMP prediction.

Table 1--Related works on machine learning based-MMP prediction model.

Ref. Data Model Optimization
Algorithm Output Input

Parameters

Mousavi et al. 2008 44 LSSVM Pure and impure CO2 MMP 5
Chen et al. 2014 85 ANN GA Pure and impure CO2 MMP 10

Choubineh et al. 2019 251 ANN MMP of different injected gas and
crude oil

Dong et al. 2019 ANN
L2

Regularization、
Dropout

MMP

Saeedi and Soleimani
2020 144 ANN TLBO、PSO Pure and impure CO2MMP 8

Tian et al. 2020 152 BP ABC、DA Pure and impure CO2 MMP 5
Zhang et al. 2020 170 BP、RF、SVM Impure CO2 MMP 6

(LSSVM: Least Squares Support Vector Machines; BP: Back Propagation; RF: Random Forest; SVM: support vector
machines; TLBO: Teaching-learning-based optimization; ABC: Artificial Bee Colony; DA: Dragonfly algorithm)

The motivation of this work is to use an optimization algorithm to automatically learn an efficient
architecture and best set of hyperparameters of machine learning algorithms without much human
intervention. It is difficult for human experts to select the parameters of machine learning algorithms
before applying it to solve any real-world problem. It usually demands human expertise and intensive
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efforts to conduct experiments on many possible configurations of algorithms parameters to finalize one
with relatively better performance. Researchers have developed hybrid versions of machine learning
models for the optimization of parameter selection. Particle swarm optimization (PSO) is the most
preferred selection of scholars to solve optimization problem as it has fewer hyperparameters, a simpler
expression, and easy computation.
Based on previous studies, this paper introduces the machine learning algorithm to establish the MMP

prediction model, and uses the PSO algorithm to optimize ML algorithm with the best performance to
establish the MMP prediction model.
The rest of the paper is structured as follows: Section 2 explains the proposed PSO-based GBDT

model architecture; Section 3 briefly presents data collected, analyzes the correlation between each
parameter and MMP; Section 4 presents experimental results and discuss the performance in terms of
accuracy; Chapter 5 concludes the research of this paper.

The Proposed Method
Gradient boosted decision trees (GBDT). GBDT was an ensemble of gradient boosting and decision
trees. The algorithm classifies or regresses the data by using an additive model (a linear combination of
basis functions) and by continuously reducing the residuals generated by the training process.
GBDT is calculated through multiple rounds of iterations, and each iteration generates a weak

classifier. Each classifier is trained based on the gradient of the previous classifier (if the loss function is a
squared loss function, the gradient is the residual value). The requirements for weak classifiers are
generally simple enough and have low variances and high biases. In the training process reducing the
deviation continuously improves the accuracy of the final classifier. The final total classifier is obtained
by weighting and summing the weak classifiers obtained from each round of training.
The general steps of GBDT are shown in Figure 1. For each category, a regression tree is trained first,

and the residuals are calculated for each category separately and repeated multiple calculations, and the
final model is obtained. When predicting, the category with the highest probability is the corresponding
category.

Figure 1—GBDT algorithm training process diagram.

Particle swarm optimization. PSO was an evolutionary computation technique from the study of bird
predation behavior. It searches the optimal solution through collaboration and information sharing among
individuals in the group.
PSO designed massless particle to simulate the birds in the birds' swarm. The particle has only two

attributes: speed and position. Each particle individually searches for the optimal solution in the search
space, which is recorded as the current individual extreme and shares the individual extreme with the
other particles in the whole swarm. All the particles in the swarm adjust their velocity and position
according to the current individual extreme they find and the current global optimal solution shared by the
whole swarm. The process of PSO algorithm is illustrated in Figure 2 as follows.
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Figure 2—PSO algorithm flowchart.

Experiments
Data collection and pre-processing. To establish a highly reliable intelligent model, factors related to
reservoir temperature (T) and relative molar fractions (mol%) of CO2, N2, CH4, and C2-Cn were collected
as relevant parameters affecting the MMP.
This paper collects 395 data from a large number of literature (Lai et al. 2017; Cardenas et al. 1984;

Eakin and Mitch 1988; Graue and Zana 1981; Kanatbayev et al. 2015; Spence and Watkins 1980; Harmon and
Reid 1988; Thakur et al. 1984; Zhang et al. 2016; Al-Ajmi et al. 2009; Glasø 1985; Dicharry et al. 1973; Henry and
Robert 1983; Khan et al. 1992) including laboratory measurement data and numerical simulation data. 195
sets of experimental data were obtained after sorting and screening for machine learning. As shown in
Figure 3, the temperature, T , ranges mainly between 50 and 100°C; The molar fraction of CO2 mainly
concentrates between 0 and 25%; The molar fraction of N2 is mainly from 0 to 10%; The component
molar fraction of C1 mainly concentrates between 0 and 60%; The component molar fraction of C2~C5
distributes between 0 and 10%; The component molar fraction of C6 ranges from 0 to 5%; The molar
fractions of C7+ ranges between 0 and 75%; MMP values mainly concentrates between 10 and 40 MPa.

Correlation analysis. Affected by the diversity of crude oil components, it is necessary to analyze the
correlation between different components and MMP. The interaction between the various components
also has a certain effect on MMP.
Temperature and molar percentages of each component were used as the influencing factors to predict

MMP. Pearson's method was used to characterize the correlation between each component and MMP. As
shown in Figure 4, the factors with the greatest influence on MMP was the reservoir temperature,
followed by the molar fraction of the carbon component. The molar fractions of CO2 and N2 have little
influence on MMP.
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Figure 3—Input parameter distribution.

Figure 4—Schematic diagram of group correlation analysis.
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Result and Discussion
The selection of proper hyperparameters of a GBDT model is very time-consuming process when it is to
be decided on a trial-and-error basis. Thus, it is required to develop an automated approach which can
reach to the best GBDT model with minimal human expertise and efforts. The proposed work uses the
random but guided nature of PSO to find the best GBDT model. It optimizes its hyperparameters on a
given dataset in predefined search-space.
After data pre-processing and correlation analysis, ten parameters, including T, the molar fraction of

CO2, N2, C1, C2, C3, C4, C5, C6, and C7+ were used as inputs of the machine learning model, and the
corresponding MMP was used as output for model training.
To ensure the coverage of the training and test sets as large as possible and without overlap, the entire

database was randomly divided into two groups: the training set and the test set. The training set consists
of 165 data points, and the test set with 30 data points was used for model validation. Five machine
learning models are established for comparison, including LR, RR, RF, MLP, and GBDT.Figure 5 shows
the predicted results obtained by the five models. The horizontal coordinates in Figure 5 are the actual
values and the vertical coordinates are the predicted MMP values. It shows that the GBDT model has the
best performance, followed by random forest. The linear regression, ridge regression, and multilayer
perceptron have poor performance.

Figure 5—Performance comparison based on predicted and actual dataset.
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Table 2 shows the accuracy of the five machine-learning models for MMP prediction. The result
indicates that GBDT model has an accuracy of 98.5% and 93.7% in the training and test set, which
outperforms the accuracy overwhelmingly to the other models.

Table 2—Current status of machine learning prediction MMP research.

Machine Learning Model
Accuracy

Train set Test set

Linear regression 47.7% 67.0%

Ridge regression 47.8% 66.6%

Gradient boosting decision tree, 98.5% 93.7%

Random forest 95.1% 88.6%

MLP 99.3% 65.2%

Swarm optimization is performed by encoding hyperparameters of GBDT into particles. The fitness
function represents the accuracy of the GBDT and has been passed on for generations. The fitness values
are estimated over 100 generations to optimize MMP prediction. Four important parameters affecting the
optimization of PSO were clarified. The PSO algorithm mainly optimizes four parameters: n-estimators,
learning rate, max-depth, and alpha. The number of n-estimators is the number of decision trees, which is
the amount of data evaluation. It has a monotonic effect on the accuracy of the model. The larger the n-
estimators, the better the model. However, the accuracy of the model does not increase after the n-
estimators reach a certain level. the optimal value of n-estimators is 413. And the value of the learning
rate needs to be set within a certain range. High learning rate will lead to unstable learning. Too small
learning rate increases the training time. The minimum miscibility pressure value of the learning rate is
0.83. The maximum parameter value for the maximum depth decision tree can be applied at high latitudes
and low sample sizes. It is very effective to decide whether to increase the depth according to the result
effect. Alpha is the weight of the L1 regularization term and can be used to speed up the computation in
the case of high dimensionality. The Optimal value of alpha is 0.50. For the experiments now on, we split
the dataset into 60% for training and 40% for evaluation. Table 3 shows the range and optimal value of
the four hyperparameters of PSO algorithm used in the experiment.

Table 3—The hyperparameters of PSO used in the experiment.

N-estimators Learning Rate Max-depth Alpha

Default value 100 1 10 0.9
Value ranges 10-1000 0.1-1 1-10 0.5-0.95
Optimal values 413 0.83 5 0.50

Figure 6 visualizes the performance of the PSO-GBDT model on training model. The curve is
generated by plotting the prediction MMP against the actual MMP at various combination of input
setting. Experiments show that the PSO optimizes the GBDT model well for MMP prediction. After the
optimization, the PSO-GBDT model achieved 99.9% of accuracy in the training set and 97.6% of
accuracy in the test set. The proposed hybrid model confirms to achieve a better performance. The
accuracy of the hybrid model is improved by 1.4% and 3.9% for the training and test set, respectively.
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Figure 6—Performance of PSO-GBDT on training model .

Conclusions
Hyperparameter fine tuning has been an obstacle for obtaining a satisfying machine learning model due to
the high cost of its trial-and-error process. To tackle this problem, we should speed up the searching
efficiency as well as reduce the computation cost of fitness evaluation. We proposed a machine learning
model optimized by PSO for efficient MMP prediction. To search for the optimal structure of machine
learning model, we performed swarm optimization by encoding hyperparameters into particles. Main
conclusions obtained by this work are as follows:
1. Temperature has the greatest influence on the MMP, followed by the molar fraction of carbon

components. In contrast, the molar fractions of CO2 and N2 components have little effect on MMP.
2. After comparing the MMP prediction models established by the five algorithms, the comparison of

accuracy shows that the GBDT model has the best performance, with 98.5% accuracy in the training
set and 93.7% accuracy in the test set.

3. With combining PSO algorithm, the PSO-GBDT model was established. The accuracy of the training
set is 99.9 %, and the accuracy of the test set is 97.6 %. The hybrid PSO-GBDT prediction model has
improved the accuracy of both the training set and the test set, making the MMP prediction more
accurate.
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