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Abstract 

This study aims to leverage artificial neural networks (ANN) for predicting the hydrate formation temperature 

(HFT) of brines commonly employed in completion, workover, and well intervention operations. To achieve this 

goal, this study constructed a robust ANN model incorporating inputs such as the brine salts components' weight, 

gas specific gravity, pressure, and percentages of impurity gases (N2, H2S, CO2). To achieve highly accurate 

forecasts for hydrate formation temperatures in both monovalent and divalent brines, a comprehensive real dataset 

with a wide range of variations was utilized. Optimization processes were then conducted to identify the optimal 

configuration for the ANN structure. This included optimization of the training function and determining the 

appropriate number of hidden neurons, among other factors. The resulting ANN models proposed in this study 

provide a correlation that can be directly utilized to estimate the hydrate formation temperature. 

Introduction  

Completion Fluid. Completion fluid is pumped downhole to perform operations after the initial drilling of a well. 

Clear brine, as a completion fluid, is used to kill the well and remains in the wellbore until the new completion 

string is installed. It can also be used as a packer fluid, or as workover fluid for a remedial operation in the well. 

Using brine at HPLT (high pressure and low temperature) environment, which is available at deepwater 

environment, may arise troubles like hydrate formation (Figure 1)(Bellarby 2009). 

 

 

Figure 1—Gas hydrates plugs (Crumpton 2018). 

 

Hydrate. Gas hydrates are called clathrates which consist of two different molecules that are mechanically 

connected but not chemically bonded. Water, by hydrogen bonding, forms cage that is physically entraping gas 

molecules normally that is smaller than n-pentane. Methane, ethane, propane, butanes, CO2, N2, and H2S. They 
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are a solid structure of gas and water that closely resemble dirty ice or snow. It is discovered in 1810 by Sir 

Humphrey Davy (Sloan 2010).  

Gas hydrates have the potential to obstruct the tubing of the well, Christmas tree, and flowlines. It is crucial to 

exercise meticulous care to proactively prevent their formation by addressing potential causes and implementing 

remedial actions as needed (Zahedi et al. 2009).  

 For deep and ultra-deep water wells, pressure could reach 10,000 psi and temperatures at seabed/mudline could 

be 35°F. These P-T conditions can activate the formation of the hydrates. 

 

Hydrates Formation. Formation of hydrates necessitates relatively low temperatures, high pressures, water and 

low-molecular weight gases, such as methane, ethane, propane, i-butane, n-butane, CO2, H2S, and nitrogen. When 

water mixed with low molecular weight gases with enough conditions of relatively low temperature and high 

pressure, hydrates is formed. The formed clatherates are a solid/rigid network of water molecules that cage in gas 

molecules of another substance (Figure 2). The most common gas could form hydrates is methane (CH4) 

(Bellarby 2009).      

                                                                                                                                                        

 

Figure 2—Lattice crystal of hydrate (Bellarby 2009). 

 

As shown in Figure 3, it is a hydrates stability curve for a typical gas composition. It is inevitable that, with 

temperature reduction and pressure increase, the conditions are more suitable to form hydrates (Crumpton 2018). 

 

 

Figure 3—Example of hydrate stability curve. 
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Hydrates stability also depends on water salinity and the type of salt in the brine/electrolyte which forms the 

hydrates. The hydrate disassociation curves are shown in Figure 4 . One is for typical hydrocarbon gas mixed 

with pure water, and another is for formation water (50,000 ppm total solids) . 

 

 

Figure 4—Example of Hydrate Stability Curve (data source: Bellarby 2009). 

 

As shown in Figure 5, the hydrate stability curves for two monovalent brines are different from each other, 

due to different salt types. In Figure 6, for the same gas composition and salt types, the hydrate stability curve is 

different from each other due to different salt concentration. 

  

 

Figure 5—Hydrate stability curve for two monovalent brines (data source: Sloan 2006). 

 

 
Figure 6—Hydrate stability curve for  three divalent brines (data source: Sloan 2006). 
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Hydrate Formation Temperature Calculation. Experimental Measurements. Experimental measurements 

stand out as the most reliable and accurate method for determining hydrate formation temperature (HFT). 

Numerous scientists have conducted experiments encompassing various gas types and conditions to estimate HFT. 

Ng and Robinson (1985), for instance, delved into hydrate formation conditions for pure gases in the presence of 

solutions containing up to 20 wt% methanol. Bishnoi and Dholabhai (1993) reported data on hydrate formation 

conditions in electrolyte solutions, glycol, and methanol. Subsequently, Talaghat (2009) conducted laboratory 

studies to measure the rate of hydrate formation for pure gases in the presence of hydrate inhibitors. Ameripour 

(2009) made significant contributions by developing correlations to estimate hydrate formation pressure or 

temperature for different gas hydrates, both with and without inhibitors. This involved utilizing variables for 

regression and developing correlations, taking into account factors such as gas specific gravity, pseudo-reduced 

temperature and pressure, water vapor pressure, and liquid water viscosity. Visual Basic programming was 

employed to create these correlations. In a different study, Marinakis and Varotsis (2013) investigated the effects 

of aqueous phase salinity for two gas mixtures at varying salinity levels. 

K-Value Method. This method uses the vapour-solid equilibrium constants for predicting conditions of hydrate 

formation. 

∑
𝑦𝑖

𝑘𝑣𝑠,𝑖
= 1𝑁

𝑖=1 ......................................................................................................................................................(1) 

Gas Gravity Method. The gas gravity plot developed by Katz (1945) was a relation between the hydrate 

formation pressure and temperature with the specific gravity of natural gases. Empirical correlations to calculate 

hydrate formation conditions by gas gravity are Hammerschmidt (1936), Berge (1986), Kobayashi et al. (1987), 

Motiee (1991), and Ghiasi (2012) correlations. 

Hammerschmidt (1936) developed his hydrate temperature formation, where α  and β are constant. 

𝑇 = 𝛼𝑃𝛽.............................................................................................................................................................(2) 

Ghiasi (2012) proposed the following equation to  

𝑇 = 𝐴0 + 𝐴1 × 𝑀 + 𝐴2 × 𝑀2 + 𝐴3 × 𝐿𝑛(𝑃) + 𝐴4 × (𝐿𝑛(𝑃))
2

+ 𝐴5 × 𝑀 × 𝐿𝑛(𝑃)....................................(3) 

Holder et al. (1988) proposed a simple relationship to calculate the hydrate formation pressure of pure gases, 

where gas is expressed in the relationship as coefficients (a and b). 

𝑃 = exp (𝑎 +
𝑏

𝑇
),...............................................................................................................................................(4) 

Thermodynamic Models. This method accounts for the interactions between water molecules which form the 

crystal lattice and gas molecules. Many models were proposed based on this method, such as Elgibaly and 

Elkamel’s model (1998) and Nasrifar et al’s model(1998). Javanmardi and Moshfeghian (1999) created a 

thermodynamic model for hydrate formation temperatures calculation of different hydrate in mixtures of common 

electrolytes (NaCl, KCl and CaCl2). 

Soft Computing Techniques. It is the method that does not involve the knowledge of the fundamental 

principles governing the process, such as artificial intelligence methods. They use the power of the big data for 

data analysis and interpretation, and models regressed by data training can be used to calculate and predict hydrate 

formation temperature. Heydari et al. (2006) used artificial neural network to predict hydrate formation 

temperature by using 167 of real data with the range of 32-74 °F for temperature, 50-4200 psia for pressure and 

0.554-1 for gas specific gravity. Zahedi et al. (2009) used artificial neural networks to propose a model with gas 

specific gravity and pressure as inputs. Khajeh (2009) used adaptive neuro-fuzzy inference system (ANFIS) to 

obtain a new regression model. Fayazi (2014) used least square support vector machine (LSSVM) algorithm to 

construct the model to forecast hydrate formation temperature. Rashid et al. (2014) proposed an approach for 

methane hydrate formation temperature prediction accurately with the presence of salt, which is already dissolved 

in the water that will form the hydrate. They used 131 datasets to build a model that predict hydrate formation 

temperature using least square support vector machine (LSSVM) method. The input data for the model are gas 

specific gravity, hydrate formation pressure, and molality as an expression for salinity, and the output is hydrate 

formation temperature. The pitfalls of Rashid et al’s model was that the developed model was based on data of 

methane hydrate only and using salt molality without defining salt type. Olabisi et al. (2019) built an ANN model 
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which was trained using 459 hydrate formation experimental data points from Katz’s (1945) chart and Wilcox et 

al. (1941) chart. Specific gravity and pressure were chosen as the inputs in the 4-layer network, and hydrate 

formation temperature was the output. The data points were pressures were from 49 psia to 4000 psia, and gas 

specific gravity was 0.5539, 0.6, 0.7, 0.8, 0.9 and 1.0. El-hoshoudy et al. (2021) used Katz’s (1945) gravity chart 

to extract (1469) data points of gas hydrate formation pressure, temperature, and specific gravity. Also, Maekawa 

(2001) studied the different equilibrium conditions for gas hydrate of methane and ethane mixtures in pure water 

and 3.0 wt% NaCl solution. Nasrifir and Moshfeghian (2000) presented a model for pure CO2 and CO2-rich gas 

hydrate formation conditions prediction in aqueous solutions containing electrolytes and their mixtures. 

Methodology 

Data Pre-Processing and Acquisition. We started by data gathering, filtering, and cleaning. It was performed 

by removing the illogic and missing values, which is an important step in any ANN model to be accurate and 

successful. 

 

Data Description. In this study, about 200 datasets were collected form real data of monovalent brine and 300 

datasets of divalent brine. Dataset consist of inputs, including weight percentages of the brine salts components 

for both monovalent brines (NaCl, KCl, NaBr) and divalent brines (CaCl2, CaBr2), gas specific gravity, pressure, 

and gas impurities percentages (N2, H2s, CO2), and the hydrate formation temperature as output. 

In the case of monovalent brines, a comprehensive statistical analysis was conducted for all data parameters, 

as outlined in Table 1. The data revealed a broad spectrum across these parameters. For example, NaCl weight 

percentage varied from 0% to 15%, KCl weight percentage ranged from 0% to 15%, NaBr weight percentage 

spanned from 0% to 30.6%, pressure fluctuated between 0.27 and 142 MPa, CO2 percentage ranged from 0% to 

24.9%, H2S percentage exhibited a range from 0 to 17.6%, N2 percentage varied between 0% and 6.8%, and gas 

specific gravity ranged from 0.55 to 0.9. Moreover, the hydrate formation temperature showed a range between 

264.4°F and 303.1°F. 

 
Table 1—Statistical analysis of monovalent brines. 

 NaCl, % KCl, % NaBr, % P, Mpa CO2, % H2S, % N2, % Sp. Gr. T,K 

Mean 2.24 2.05 2.86 10.41 3.00 1.83 0.35 0.65 284.07 

Standard Error 0.27 0.29 0.60 1.13 0.46 0.31 0.08 0.01 0.67 

Median 0.00 0.00 0.00 5.19 0.00 0.00 0.00 0.65 284.20 

Standard 

Deviation 
3.64 3.95 8.22 15.52 6.25 4.13 1.11 0.09 9.19 

Sample Variance 13.24 15.59 67.50 240.79 39.06 17.08 1.22 0.01 84.50 

Kurtosis 2.23 2.68 5.40 33.60 2.96 6.03 29.02 0.02 -0.96 

Skewness 1.69 1.96 2.65 4.95 2.01 2.53 5.37 0.88 -0.22 

Range 15.00 15.00 30.60 142.15 24.90 17.60 6.80 0.34 38.70 

Minimum 0.00 0.00 0.00 0.27 0.00 0.00 0.00 0.55 264.40 

Maximum 15.00 15.00 30.60 142.42 24.90 17.60 6.80 0.90 303.10 

 

Table 2 presents the results of statistical analysis for all parameters related to divalent brines. The data exhibited 

a considerable range across various factors. CaCl2 weight percentage varied from 0% to 33%, CaBr2 weight 

percentage ranged from 0% to 32%, pressure spanned from 0.27 to 204.58 MPa, CO2 percentage showed a range 

of 0% to 24.9%, H2S percentage had a range of 0% to 17.6%, N2 percentage ranged from 0% to 6.8%, and gas 

specific gravity varied between 0.55 and 0.9. Additionally, the hydrate formation temperature exhibited a range 

of 282.52°F to 309.75°F. 
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Table 2—Statistical analysis of divalent brines. 

  CaCl2 CaBr2 P, MPa CO2 H2S N2 Gas sp. Gr. T,K 

Mean 16.61 10.17 41.51 1.73 0.99 0.15 0.77 282.52 

Standard Error 0.71 0.71 2.80 0.26 0.17 0.05 0.01 0.82 

Median 27.00 3.00 19.85 0.00 0.00 0.00 0.84 285.75 

Standard Deviation 12.97 13.08 51.42 4.87 3.16 0.83 0.10 15.11 

Sample Variance 168.24 171.11 2644.16 23.69 10.01 0.69 0.01 228.27 

Kurtosis -1.75 -1.30 1.71 8.70 14.63 59.75 -0.80 -0.50 

Skewness -0.43 0.80 1.61 3.04 3.75 7.73 -0.88 -0.55 

Range 33.00 32.00 204.31 24.90 17.60 6.80 0.34 67.21 

Minimum 0.00 0.00 0.27 0.00 0.00 0.00 0.55 242.54 

Maximum 33.00 32.00 204.58 24.90 17.60 6.80 0.90 309.75 

 

Correlation Coefficient. The correlation coefficient is employed to assess the connection between two 

parameters. It serves as a measure of the influence of each feature or input on the output. When numerous 

parameters impact the output, it can function as a screening or evaluation tool, helping identify the most impactful 

parameters and whether their effects are positive or negative.  

𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡(𝑥, 𝑦) =
Σ(𝑥−𝑥𝑎𝑣𝑔)(𝑦−𝑦𝑎𝑣𝑔)

√Σ(x−xavg)2Σ(𝑦−𝑦𝑎𝑣𝑔)2
,.................................................................................(5) 

The correlation coefficient plots for different parameters in monovalent and divalent brines are depicted in 

Figures 7 and 8, respectively.  

 

 

Figure 7—Correlation coefficient of different parameters for monovalent brines. 

 

 

Figure 8—Correlation coefficient of different parameters for divalent brines. 
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Data Normalization. To prepare the data for constructing the ANN model, it is essential to perform data 

normalization. This step ensures that all variables are converted to a comparable scale, facilitating a more accurate 

and efficient learning process. To normalize the data within the range of -1 to 1, the following equation was 

applied. 

𝑥𝑛𝑜𝑟 = 2 ∗ (
𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
) − 1.............................................................................................................................(6) 

For monovalent brines: 

𝑁𝑎𝐶𝑙 𝑤𝑡%𝑛𝑜𝑟 = 0.1333 ∗ 𝑁𝑎𝐶𝑙 𝑤𝑡% − 1,................................................................................................................(7)                         

𝐾𝐶𝑙 𝑤𝑡%𝑛𝑜𝑟 = 0.1333 ∗ 𝐾𝐶𝑙 𝑤𝑡% − 1,....................................................................................................................(8)  

𝑁𝑎𝐵𝑟 𝑤𝑡%𝑛𝑜𝑟 = 0.0654 ∗ 𝑁𝑎𝐵𝑟 𝑤𝑡% − 1,...............................................................................................................(9)  

𝑃𝑛𝑜𝑟 = 0.0141 ∗ 𝑃 − 1.0038,................................................................................................................................(10)  

𝐶𝑂2 %𝑛𝑜𝑟 = 0.0803 ∗ 𝐶𝑂2% − 1,.........................................................................................................................(11)  

𝐻2𝑆%𝑛𝑜𝑟 = 0.1136 ∗ 𝐻2𝑆% − 1,..........................................................................................................................(12)  

𝑁2%𝑛𝑜𝑟 = 0.2941 ∗ 𝑁2% − 1,.............................................................................................................................(13)  

𝛾𝑔 𝑛𝑜𝑟 = 5.8116 ∗ 𝛾𝑔 − 4.2064............................................................................................................................(14)  

When HFT is obtained, it will be normalized and to converted to original value by using the expression as 

follows, 

𝐻𝐹𝑇 = 19.35 ∗ 𝐻𝐹𝑇𝑛𝑜𝑟 + 283.75................................................................................................................(15) 
For divalent brines, the equations used for data normalization are as follows. 

𝐶𝑎𝐶𝑙2 𝑤𝑡%𝑛𝑜𝑟 = 0.0606 ∗ 𝐶𝑎𝐶𝑙2 𝑤𝑡% − 1 ,..............................................................................................(16)  

𝐶𝑎𝐵𝑟2 𝑤𝑡%𝑛𝑜𝑟 = 0.0625 ∗ 𝐶𝑎𝐵𝑟2 𝑤𝑡% − 1,.............................................................................................(17)  

𝑃𝑛𝑜𝑟 = 0.0098 ∗ 𝑃 − 1.0026,.......................................................................................................................(18)  

𝐶𝑂2 %𝑛𝑜𝑟 = 0.0803 ∗ 𝐶𝑜2% − 1,................................................................................................................(19)  

𝐻2𝑆%𝑛𝑜𝑟 = 0.1136 ∗ 𝐻2𝑠% − 1,.................................................................................................................(20)  

𝑁2%𝑛𝑜𝑟 = 0.2941 ∗ 𝑁2% − 1,.....................................................................................................................(21)  

𝛾𝑔 𝑛𝑜𝑟 = 5.8116 ∗ 𝛾𝑔 − 4.2064....................................................................................................................(22)  

When HFT is obtained from it will be normalized and to convert it to original value, use expression: 

𝐻𝐹𝑇 = 33.606 ∗ 𝐻𝐹𝑇𝑛𝑜𝑟 + 276.14..............................................................................................................(23) 

 

Artificial Neural Networks (ANN). ANN is typically structured with three layers: input, hidden, and output 

layers. The methodology of ANN involves the utilization of weights and biases to establish connections between 

these layers, influencing the network's performance (Figure 9). The objective is to compare the target with the 

output value, measure the disparity between them, and then adjust weights based on this difference until it reaches 

an acceptable minimum value. The data undergoes various stages, including training, testing, and validation. In 

this study, the dataset was partitioned, allocating 70% for training and 30% for testing and validation purposes. 

 

 



 8 

 

Figure 9—Flowchart of artificial neural network 

 

Network Optimization. The performance of the artificial neural network (ANN) of divalent and monovalent 

brines (Figures 10 and 11) will undergo optimization through the adjustment of two key factors: the training 

function and the number of neurons. Various training methods, including the Levenberg-Marquardt, Bayesian 

regularization, and scaled conjugate gradient methods, will be utilized for data training. The mean square error 

(MSE) will be computed, and the training method or number of neurons associated with the lowest error will be 

selected for optimal performance. 

𝑀𝑆𝐸 =
∑ (𝑋𝑖𝑜−𝑋𝑖𝑝)2𝑛

𝑖=1

𝑛
........................................................................................................................................(24) 

 

 
Figure 10—Network configuration for monovalent brines.  

 

The inputs for the hidden are calculated from the following expression, 

𝑆𝑖, 𝑗 = ∑ (𝑤𝑖, 𝑗 ∗ 𝑥𝑗) + 𝑏𝑖𝑛
𝑖=1  ,..........................................................................................................................(25) 

where, i represents number of neurons, and j represents number of inputs, xj represents the inputs. The outputs 

from the hidden layer (according to Tan sigmoid activation function) are calculated using, 

𝐻𝑖 =
2

1+exp (−2∗𝑆𝑖)
− 1.............................................................................................................................(26) 

To get the final value of PCT, the function between output layer and hidden layer is linear and calculated by, 

𝑁𝑒𝑡 = ∑ (𝑤2𝑖 ∗ 𝐻𝑖) + 𝑏2𝑛
𝑖=1 ,.........................................................................................................................(27) 

where w2i  is the weight of neuron i at the hidden layer and output layer. 
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Figure 11—Network configuration for divalent brines.  

Results Analysis  

The correlation between the MSE and number of neurons for different training function were analyzed in this 

section for monovalent and divalent brines, respectively.  

 

Monovalent Brines. The configuration that yielded the smallest MSE was with 19 neurons in the hidden layer, 

using the Levenberg-Marquardt training function, resulting in an MSE of 0.315×10-2. With the Bayesian 

regularization training function, a setup featuring 14 neurons in the hidden layer achieved an MSE of 0.0693× 

10-2. On the other hand, when using the scaled conjugate gradient training function, 19 neurons in the hidden 

layer produced an MSE of 3.15×10-2 (Figure 12). Table 3 summarized the weights and biases of the ANN model  

for monovalent brines with 14 neurons.  

 

 

Figure 12—MSE for various number of neuron by the different training functions for monovalent brines. 
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Table 3—Weights and biases of ANN model  for monovalent brines. 

Neuron wi, 1 wi, 2 wi,3 wi,4 wi,5 wi,6 wi,7 wi,8 bi w2,i b2 

1 0.442 0.265 -0.334 -0.235 0.243 0.149 -0.199 -0.593 -0.145 0.892 -0.41 

2 1.226 1.383 -1.918 0.877 -0.213 -0.247 0.111 0.972 0.806 2.410  

3 -0.061 -0.031 0.067 0.393 -1.051 -0.457 -0.064 -0.835 0.127 -1.521  

4 -0.065 -0.262 -0.586 8.144 0.381 0.320 0.007 -0.925 8.334 7.163  

5 0.330 0.847 0.360 -0.420 -1.079 -1.024 -0.575 4.795 -0.023 -2.392  

6 -0.384 -0.094 -0.377 -0.107 0.183 0.154 0.050 -0.058 -0.141 0.672  

7 0.086 0.052 -0.036 -0.458 0.984 0.666 0.082 0.868 -0.146 1.584  

8 0.043 -1.221 0.529 -2.228 0.141 -0.592 1.381 -0.457 -1.553 2.252  

9 0.051 0.259 0.845 0.601 -0.814 -0.508 0.120 3.773 -0.332 -1.926  

10 -1.113 -1.037 -0.505 -1.639 0.730 0.469 0.550 -2.986 -0.585 -2.722  

11 -0.109 -0.653 -0.753 5.698 1.090 0.745 -0.104 -2.697 5.299 -4.181  

12 0.542 -1.335 -0.682 1.528 1.067 -0.885 0.430 -0.750 0.379 -1.698  

13 -1.482 -1.001 -0.563 2.794 0.093 0.004 -0.460 -0.696 -0.263 2.280  

14 -0.630 0.485 0.111 -2.987 0.463 0.548 0.290 -1.393 -1.651 -1.920  

 

 

Divalent Brines. Under the Levenberg-Marquardt training function, employing 18 neurons in the hidden layer 

resulted in a MSE of 0.0237×10-2. Meanwhile, with the Bayesian regularization training function, utilizing 16 

neurons in the hidden layer yielded an impressively low MSE of 0.0036×10-2. When employing the Scaled 

Conjugate Gradient training function, 15 neurons in the hidden layer led to an MSE of 1.88×10-2 (Figure 13). 

Table 4 summarized the weights and biases of the ANN model  for divalent brines with 16 neurons.  

 
 

 
Figure 13—MSE for number of neuron by different training functions for divalent brines. 
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Table 4—Weights and biases of ANN model for divalent brines. 

Neuron wi,1 wi,2 wi,3 wi,4 wi,5 wi,6 wi,7 bi w2,i b2 

1 -1.038 0.748 -1.604 -0.635 0.158 -0.597 2.590 -0.310 2.038 0.963 

2 0.350 0.584 -15.123 -2.800 2.605 4.680 0.264 -10.534 -4.151  

3 -0.634 -1.389 0.628 -0.118 1.668 -1.767 -4.848 -0.863 2.306  

4 -0.834 -1.534 0.808 -1.292 0.552 0.235 -1.415 -0.410 -2.586  

5 0.750 -0.045 -9.304 -0.963 2.174 6.270 0.426 -1.461 -6.474  

6 -1.384 0.617 -1.516 -1.924 1.065 -0.002 2.083 -0.869 -2.303  

7 1.339 -0.297 -9.484 -1.079 1.445 2.819 -0.220 -5.934 5.150  

8 -1.591 0.068 6.329 -0.897 -0.513 -0.250 1.303 4.556 2.524  

9 0.508 1.768 -3.732 -0.790 1.717 1.441 0.330 -1.284 3.178  

10 1.142 -2.781 0.289 -0.554 0.169 0.136 -3.758 -1.801 2.431  

11 -0.231 -0.405 8.515 0.402 -1.947 -6.867 -0.435 0.116 -6.637  

12 -0.611 0.119 -0.554 -1.188 -1.505 1.447 -0.562 -0.724 3.457  

13 -0.713 1.340 0.629 0.533 0.882 -0.148 0.609 0.241 2.448  

14 -0.539 -0.282 -1.708 1.374 0.406 -0.684 5.769 -1.168 2.529  

15 -0.617 -1.371 1.187 -0.314 1.335 0.086 2.503 -0.352 2.432  

16 -0.674 -2.211 3.617 -1.207 -1.515 -1.332 -0.205 -0.044 3.486  

 

Upon optimization, it appears that the Bayesian regularization training function exhibits the lowest error across 

both types of brines. Specifically, for monovalent brines, a 14-neuron network yields the most accurate match 

and the lowest MSE. In the case of divalent brines, a 16-neuron network demonstrates the best results with the 

lowest MSE. As shown in Figures 14 and 15, the predicted HFT by ANN model showed great agreement with 

actual HFT for both monovalent and divalent brines. Consequently, the weights and biases corresponding to these 

networks were chosen and employed for further investigation.  

 

 

 

Figure 14—Predicted HFT by ANN model vs. actual HFT for monovalent brines. 
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Figure 15—Predicted HFT by ANN model vs. actual HFT for divalent  brine. 

 

Results Comparison. The ANN models were contrasted with the computed outcomes derived from Ameripour's 

(2009) correlation. The designated specific gas gravity was set at 0.645, and the NaBr brine concentration was 

20% for monovalent brines.   

 

 

Figure 16—Hydrate pressure vs. temperature of the two models for monovalent brines. 

 

Table 5—Comparison of error% between the two models for monovalent brines. 

Pressure, MPA T, K 
T, K 

(Amereripour 2009) 
ER% 

T, K 

 (ANN model) 
ER% 

27.85 291.93 297.2729107 -1.830202692 291.6230148 0.105157 

27.03 291.43 297.0856811 -1.940665368 291.4691147 -0.01342 

21.65 290.98 295.6254951 -1.596499799 290.2123662 0.26381 

20.51 290.71 295.2514293 -1.56218544 289.9994762 0.24441 

13.65 288.43 292.2078762 -1.309806955 289.3868945 -0.33176 

14.41 288.26 292.6366603 -1.518303018 289.5172242 -0.43614 
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In the case of divalent brines, the specific gas gravity was determined to be 0.572, with a CaCl2 brine 

concentration of 10%. Upon examining Figures 16 and 17, it becomes evident that the ANN model exhibits a 

closer alignment with actual data, showcasing a lower error rate (ER%). Tables 5 and 6 summarized and compared 

the error between two models for monovalent and divalent brines, respectively. 

 

Figure 17—Hydrate pressure vs. temperature of two models for divalent brines. 

 

Table 6—Comparison of error (%) between two models for divalent brines. 

P, MPa T, K 
T, K 

 (Amereripour 2009) 
ER% 

T, K 

(ANN model) 
ER% 

0.63 266.7 246.9805032 7.393887068 267.3144 -0.23036 

0.88 269.2 256.6640622 4.656737649 269.1893 0.003977 

1.14 271.1 263.1862017 2.919143606 270.9729 0.046876 

1.44 273.5 268.420014 1.857398887 272.8247 0.246908 

1.88 275.4 273.7304152 0.606239951 275.1539 0.089354 

2.48 277.4 278.6079655 -0.435459812 277.6289 -0.08251 

3.34 279.7 283.2550483 -1.271021911 279.8993 -0.07125 

Conclusions 

This study introduces a novel method for predicting and estimating HFT values. The newly developed ANN HFT 

prediction model demonstrates its robustness when compared to other previously published HFT models. The 

methodology was applied to two distinct types of brines, monovalent and divalent, to enhance accuracy. The 

optimization strategies employed in each model proved successful in achieving high accuracy levels, with an R 

value of 0.95 for the monovalent brine model and 0.96 for the divalent brine model in the testing dataset. An 

additional noteworthy aspect of this study is its potential time-saving benefits in HFT estimation, making it 

particularly valuable for real completion operations, especially in high-pressure, low-temperature (HPLT) 

environments. 

Nomenclature 

𝛾 = Gas specific gravity; 

Ki = Equilibrium constant for component i; 

Yi = Mole fraction of each component in the gas on a water free basis; 

M = Molecular weight; 
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MSE = Mean square error. 
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