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Abstract
Steam flooding as a popular method for heavy oil recovery is associated with high cost and uncertainty issues.
These issues are usually analyzed through various simulations and experiments which are usually time
consuming and computationally expensive. Hence, in this study a response surface model as proxy model was
developed to estimate the cumulative recovery volume (CRV) from a heterogeneous reservoir undergoing a
steam flooding process. A five inverted spot steam flooding pattern for the heavy oil reservoir was developed,
followed by a Box-Behnken experimental design considering steam and reservoir parameters, was used for data
generation. Hence, with steam injection rates, steam temperature, steam quality, bottom-hole flowing pressures
of the producer wells as the input parameters, a reduced quadratic response surface model was developed to
predict the CRV. With the developed model as the objective function, the maximization of the CRV was
achieved while determining the optimal values for the parameters used. The study proved successful as the
adjusted and predicted R2 values were recorded as 97.59% and 95.85%, respectively. Also, up to 19% increase
in CRV was achieved after the optimization process. This research, therefore, demonstrates the feasibility of
using proxy models to analyse and estimate CRV of a steam flooding reservoir while benefiting from the
computational advantages they provide. This approach has potential applications in the oil and gas industry, as
it can help reduce uncertainty and the associated high costs of heavy oil recovery.

Introduction
There is an increasing demand for fossil energy in the world as human population and mechanization increases
(Al Adasani and Bai 2011). According to the International Energy Agency (IEA) forecast for 2008-2035
outlook, there will be a primary energy demand rate of around 300 MMBOE/D and crude oil is predicted to
escalate to almost 100 MMBOE/D by 2035 (Evans et al. 2021). This has therefore fostered the need for the
exploration and exploitation of various unconventional energy sources. The extraction of crude oil from the
subsurface generally follows three stages, namely, the primary, secondary and enhanced oil recovery (tertiary)
stages. Sponsored by the natural drive mechanism of the reservoir, the oil is being produced in the primary
recovery stage, and this usually results to roughly 10% of oil supposed to be produced from the formation. In
secondary recovery, specialized fluids are injected into the reservoir, through a displacing technique, can extract
20-40% of original oil in place. Then the last production stage involving the production of heavy crude oil
unlike primary and secondary uses specialized techniques for 30%-60% of heavy oil production (Alawode and
Falode 2021; Muzzafaruddin 2019; Mokheimer et al. 2019).
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One of the most popular and efficient ways of enhanced oil recovery is the thermal recovery method (Hama
et al. 2014). The idea here is that heat is used to increase the temperature of the formation thereby lowering the
viscosity of the heavy oil contained in this formation, permitting the oil to easily flow towards the production
well. Most times this method can involve different steam injection techniques (Chaalal 2018). Thermal recovery
method can involve any of these techniques, including steam flooding, steam assisted gravity drainage (SAGD),
in-situ combustion, cyclic steam injection etc. Amongst these techniques is the steam flooding thermal EOR
method, which is being investigated in this research. Steam flooding is a type of thermal EOR method that uses
an injection-to-production configuration for heavy oil production. Steam is pumped into the reservoir from the
injector well(s), As shown in Figure 1, the pumped steam heats up the formation around the wellbore,
eventually forming a steam zone that grows with continuous steam injection while reducing formation fluid
viscosity and increasing oil mobility.

Figure 1—A typical illustration of a steam flooding process (Modified fromMokheimer et al. 2019).

However, while EOR methods especially the thermal techniques have proven to be efficient, initial
assessment of the feasibility of the chosen technique must be ascertained before field scale application
(Matthew et al. 2023). The feasibility study must consider the risk, economic viability (realizable oil volume by
the process) and optimal parameters for optimal production from such reservoirs. The industry, on this regard,
has always relied on building and evaluating reservoir numerical simulation model to carry out these studies.
However, the complexity of these numerical simulations makes conducting a full experimental run time-
consuming. Additionally, there are significant storage constraints, and often, the simulations lack the flexibility
needed to perform sensitivity studies. These studies are essential for assessing the impact of one parameter on
another and identifying optimal parameters for achieving optimal production (Ma and Leung 2020; Yu et al.
2021). To mitigate these gaps, an innovative approach, known as proxy models have proven to be successful
and have been utilized in providing excellent solutions. The proxy model, also known as the surrogate model, is
simply a representation of a complex numerical simulation that is useful in higher levels of reservoir study such
as uncertainty analysis, risk analysis, and production optimization (Bahrami et al. 2022; Silva et al. 2020). This
approach has since been applied in various areas with significant results. Aboaba et al. (2020) implemented
smart proxy models in in computational fluid dynamics (CFD) simulation and thereby reduced the
computational cost that would have been associated with the CFD simulations. Similarly, by leveraging an
optimized least-squares support vector machine (LSSVM) as an adaptive proxy model, Qiao et al. (2022) were
able to handle efficiently production optimization problems. While surrogate models have been applied in these
aforementioned areas, Yu et al. (2021) leveraged artificial neural networks as a suitable data-driven proxy
model for forecasting the cumulative oil production during a steam-assisted gravity drainage process. While,
Matthew et al. (2023) combined proxy models and NSGA-II (Non-dominated Sorting Genetic Algorithm II) to
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determine the optimal values for water injection rates and half-cycle lengths to maximize the oil recovery and
CO2 stored in the reservoir. These various applications of proxy models therefore make the use of proxy models
suitable for application for problems having similar challenging constraints.
Hence in this study, a quadratic response surface proxy model was developed to estimate the cumulative

recovery volume from a heterogeneous heavy oil reservoir undergoing a steam flooding process. With the
developed model, further investigative studies provided optimal values for the selected parameters, including
steam injection rates, steam temperature, steam quality, bottom-hole flowing pressure to maximize production
from this process. Several areas covered in this study can be summarized as follows.
1. The complex numerical simulation to model a steam flooding pattern with five inverted spots for a heavy

oil reservoir was first developed.
2. The study utilized a Box-Behnken experimental design, considering steam injection rates, steam

temperature, steam quality, and bottom-hole flowing pressure of the producing wells.
3. After creating and validating the proxy model, further uncertainty studies were conducted to evaluate the

behaviour of input parameters and optimize the objective function.
The paper comprises multiple sections. Section 1 provides an overview of the background and research

objectives. Section 2 outlines the materials and methods employed to attain these objectives. Section 3 is
dedicated to presenting the results and discussing the comprehensive findings of the study. The final section
encompasses the conclusions and recommendations derived from our research.

Materials and Methods
Steam Flooding Reservoir Simulation Model. In proxy model design, defining the actual complex system of
interest must first be accomplished. This system otherwise referred (Aboaba et al. 2020), involves a space and
time simulation usually generated with a simulator with defined input and output sections. Hence, in this study a
reservoir simulation was developed for a five inverted spot steam flooding pattern for 10 years time step, using
Eclipse 2019 edition. The developed heterogeneous mode with dimensions of 2500×2000× 2500 (ft), has a
porosity of 30%, with varying permeabilities ranging from 500,000 to 1000,000 mD across the formations. The
model is made up of a single injector well located at the center, from which steam is pumped in and four
producer wells as can be depicted in Figure 2. However, it is worthy to note that all the reservoir, well
configuration and PVT data were obtained from SPE 2 model (SPE 2010), with slight modifications to our
study.

(A) 2D Steam drive reservoir model (B) 3D Steam drive reservoir model

Figure 2—Steam flooding reservoir simulation model.
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Data Generation. In building a proxy model, data is of uttermost importance as the algorithm will leverage on
it to produce a suitable proxy model. Hence, the data generation for this study took several steps which are
summarized as seen in Figure 3. Firstly, a Box-Behnken experimental design was utilized to develop
experimental runs considering various reservoir and steam flooding parameters. Box-Behnken Design (BBD) is
a type of design pattern for response surface modelling specifically for fitting a second-order (quadratic) model.

Figure 3—Steps for generating data for proxy model development.

BBD proves beneficial as it eliminates the need to test points at the extremes of the cubic region resulting
from two-level factorial combinations. This is particularly advantageous, given that such points are either
prohibitively expensive or impossible to test due to physical constraints in experimentation (Ahmad et al. 2020;
Ferreira et al. 2007). Next, with the generated experimental runs fed into the reservoir model, the output was
then collected for each row or experimental run. While this process may seem time consuming, a Python
automation script was developed to handle this process within few minutes. Table 1 shows the various
controllable reservoir parameters considered for the model development.

Table 1—Reservoir and Steam flooding parameters for proxy model development.

S/N Parameters Identifiers Units Min Max

1. Bottom-hole pressure for Well 1 X1 psi 500 2000

2. Bottom-hole pressure for Well 2 X2 psi 500 2000

3. Bottom-hole pressure for Well 3 X3 psi 500 2000

4. Bottom-hole pressure for Well 4 X4 psi 500 2000

5. Steam injection rate X5 Cc/day 1000 10000

6. Steam quality X6 - 0.1 1

7. Steam temperature X7 ºC 100 200

Proxy Model. A quadratic proxy model serves as a pivotal tool in approximating complex relationships
between variables within a system. In this study, the quadratic proxy model was constructed using
DesignExpert-13 software, a robust statistical tool known for its capabilities in experimental design and analysis.
Generally, quadratic equation takes the general form as,
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� � = ��2 + �� + � ,.......................................................................................................................................................(1)

where �, �, and � are coefficients, and � represents the independent variable.
This equation encapsulates a nonlinear relationship wherein the variable � is squared, thus allowing for the

representation of curvature in the relationship between variables. The quadratic model was selected as the proxy
model in this study because of both its performance, simplicity and interpretability. Additionally, quadratic
model provides flexibility by accommodating curvature and nonlinearity in the data, allowing for the
representation of complex relationships and often yields accurate predictions within the range of observed data
points, making it valuable for interpolation tasks (Shacham et al. 2007).

Objective Function. An objective function serves as a cornerstone in optimization tasks, encapsulating the
desired outcome or criteria to be maximized or minimized. In our study, the objective function encapsulates the
fundamental goals or performance metrics that we aim to optimize. Maximizing the objective function is crucial
as it enables us to enhance specific aspects of the system under investigation, leading to improved efficiency,
performance, or effectiveness. By maximizing the objective function, we seek to achieve the optimal
configuration or set of parameters that yield the most desirable outcomes (Bhaskar et al. 2017; Minhas et al.
2021). In cases where the goal is to maximize the objective function, hence, the general equation for such
optimization process can be expressed in the equation below;

� = max � �1, �2, …, �� ,..............................................................................................................................(2)

where y represent the output value from the optimization process, while � x1, x2, …, xn , represents the
objective function to be maximized while x1, x2, …, xn represents the variables or parameters under
consideration within the system.
Similarly, in our case study, the proxy model developed for the estimation of the cumulative volume of oil

recoverable from the steam flooding process becomes the objective function to be maximized, while
determining the optimal parameters for the reservoir parameters.

Results and Discussions
Proxy Model Result and Interpretation. Proxy models in reservoir engineering are known for their usefulness
in approximating relationships within complex reservoir simulation models. In this research, the developed
model is a reduced quadratic model which is defined as thus,

log10 ��� = 0.0688692�6
2 + 2.56296 × 10−9�5

2 − 9.9533 × 10−9�4
2 − 6.33966 × 10−9�1

2 −
2.61898 × 10−6�5�6 + 1.58417 × 10−9�4�5 + 1.744 × 10−9�3�5 − 3.90065 × 10−5�7 −
0.0831905�6 − 4.30134 × 10−5�5 + 1.37941 × 10−5�4 − 1.2208 × 10−5�3 + 1.41117 × 10−5�1 +
7.02342............................................................................................................................................................(3)

From Eq. 3, we can observe that the output is in logarithmic values, hence to obtain the actual values, we
need to take exponential of both sides, thereby resulting to a final model as shown in Eq. 4,

��� = � log10 ��� ............................................................................................................................................(4)
Hence, by providing the combination of reservoir and steam flooding parameters, such as the bottom-hole well
pressure, steam temperature, and the steam quality values for Eq. 4, the cumulative recoverable volume can be
accurately estimated.

Statistical Evaluation of Developed Model. The ANOVA table, as shown in Table 2 presents a rigorous
examination of the model's performance and the individual predictors. The overall model exhibits remarkable
significance (p<0.0001), signifying that it effectively predicts the variable. The high R² value of 0.9816 further
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reinforces this, indicating that approximately 98% of the variance in the dependent variable can be attributed to
our model. Moreover, the R² score is in reasonable agreement with the adjusted R2, that is the difference is less
than 0.2. From the table also, its worthy to note that the alphabets A, C, D, E, F and G represent X1, X3, X4, X5,
X6 and X7, respectively. Hence, among the predictors, A, E, F, E², and F² emerged as key contributors due to
their substantial F-values and low p-values (p<0.0001). These variables significantly enhance our model's
predictive power. However, it is essential to consider that C, D, and G exhibit p-values greater than 0.05,
rendering them statistically insignificant at the 95% confidence level selected in this study.

Table 2—Analysis of Variance (ANOVA) for CRV.

Source Sum of Squares Df Mean Square F-value p-value

Model 0.1141 13 0.0088 172.30 < 0.0001 significant

A-X1 0.0000 1 0.0000 0.8001 0.3762

C-X3 0.0001 1 0.0001 1.81 0.1853

D-X4 0.0001 1 0.0001 1.50 0.2280

E-X5 0.0712 1 0.0712 1397.20 < 0.0001

F-X6 0.0023 1 0.0023 45.51 < 0.0001

G-X7 0.0001 1 0.0001 1.79 0.1879

CE 0.0003 1 0.0003 5.44 0.0245

DE 0.0002 1 0.0002 4.49 0.0401

EF 0.0002 1 0.0002 4.42 0.0416

A² 0.0002 1 0.0002 3.00 0.0908

D² 0.0004 1 0.0004 7.38 0.0095

E² 0.0323 1 0.0323 634.59 < 0.0001

F² 0.0023 1 0.0023 45.82 < 0.0001

Residual 0.0021 42 0.0001

Cor Total 0.1162 55

SD=0.0071 Mean=6.87 *CV%=0.1039 PRESS=0.0048 R2=0.9816 Adj R2=0.9759 Adeq. Precision=39.0244

* CV is coefficient of variation and PRESS is predicted residual error of sum of squares.
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Figure 4—(A) Plot of actual vs. predicted response of surface; (B) Normal probability plot to residuals of CRV
data; (C) The plot of residuals vs. predicted response of CRV data; (D) The plot of residuals vs. run of CRV data.

Figure 4(A) compares the predicted and actual values of CRV (MM.BBL) and hence, it can be observed that
the data points are scattered around the diagonal line, which represents good prediction with approximately 98%
accuracy. Points close to the diagonal line indicate accurate predictions, while deviations from the line
specifically in red and green colors account for the 2% error in prediction. Additionally, the normal probability
plot as shown in Figure 4(B) indicates that the residuals follow a normal distribution, thus follow the straight
line and “S-shaped” curve, suggests that the transformation of the response will provide a better analysis.
Figure 4(C), however, presents the plot of the residuals versus the ascending predicted response values, which
is a random scatter depicting expanding variance, suggesting need for response transformation. Lastly, Figure
4(D) shows the plot of the residuals versus the experimental run order. The scatter of residuals appears random
and is evenly distributed around the mean residual value. This suggests that the residuals are not influenced by
the order in which the runs were conducted, indicating their independence from the run sequence.

Sensitivity Analysis. In an attempt to study the effect of the factors (reservoir and steam flooding parameters)
considered in this study, a sensitivity study was carried out using the perturbation functionality of the Design
Expert software. The effect of these factors on our response, the cumulative recoverable volume can be seen in
Figure 5.
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Figure 5—The effect of these factors on our response surface.

As can be observed from Figure 5, as the deviation from the reference point increases, CRV sharply
decreases, this shows that factor E (steam injection rate) plays a critical role in reducing CRV and hence,
determining its optimal parameter can lead to significant improvements in CRV. However, factors A (BHP
well_1), C (BHP well_3), and G (steam temperature) can be observed to have exhibited minimal influence as
they have relatively flat lines near the reference point, hence, changes in factors A, C, and G have minimal
impact on CRV. Additionally, while factors F (steam quality) and D (BHP well_4) may not be as impactful as
factor E, optimizing F and D may contribute positively to CRV as they show slight inclines, indicating positive
correlations with CRV.

Optimization Analysis. The numerical optimization algorithm adopted in this research follows the hill
climbing technique. Firstly, the objective function (desirability function) is set to ranges from zero to outside of
the limits to one at the goal. By leveraging a penalty function, a set of random points based on defined
constraints are checked to see if there is a more desirable solution. Based on this approach, the solution
highlighting the top 5 optimization results is shown in Table 3.

Table 3—Top 5 optimization results.

Number X1 X2 X3 X4 X5 X6 X7 Optimized CRV Desirability

1 1250 0 1250 500 1000 0.1 150 9313994.303 0.959

2 1250 0 1250 500 1000 1 150 9121955.466 0.946

3 648.822 0 747.588 665.041 1418.562 0.108 114.617 9120851.876 0.946

4 1250 0 1250 2000 1000 0.1 150 9013188.917 0.938

5 500 0 500 1250 1000 0.55 150 9009920.854 0.938
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From Table 3, it can be observed that the Feature B was set to zero, since it was not part of the objective
function. From the result also, it can be observed that the highest cumulative recoverable volume 9,313,994.303
bbl which is approximately 19% increase as compared to the average cumulative recoverable volume from the
reservoir experimental results.

Conclusions and Recommendations
In this study, we developed a quadratic response surface proxy model to estimate the cumulative recovery
volume (CRV) from a heterogeneous heavy oil reservoir undergoing steam flooding. Through rigorous
numerical simulations and experimentation, we addressed the challenges associated with high costs and
uncertainty in heavy oil recovery processes. Our findings demonstrate the feasibility and effectiveness of using
proxy models to analyse and optimize steam flooding operations, thereby potentially reducing costs and
improving recovery rates in the oil and gas industry. The development of the proxy model involved the creation
of a complex numerical simulation to model a steam flooding pattern with five inverted spots for the heavy oil
reservoir. Utilizing a Box-Behnken experimental design, we considered key parameters such as steam injection
rates, steam temperature, steam quality, and bottomhole flowing pressure of the producing wells. The resulting
proxy model, validated with high adjusted and predicted R2 values, successfully predicted CRV with
remarkable accuracy. Through further sensitivity studies, we evaluated the behaviour of input parameters and
optimized the objective function to maximize production from the steam flooding process. Our results indicate
that steam injection rate, steam quality and Bottomhole pressure for well_4 played critical role in CRV
determination, while BHP well_1, BHP well_3, and steam temperature exhibited minimal influence. Following
the optimization process, we observed a substantial CRV increase of up to 19%, highlighting the potential of
our approach to enhance recovery outcomes.
Based on the outcomes of our study, we offer the following recommendations for future research and

practical applications:
 Further research could focus on refining the proxy model by incorporating additional parameters and

considering more complex reservoir conditions. This could improve the accuracy of predictions and
optimize steam flooding operations even further.

 Our findings suggest that the developed proxy model has practical applications in the oil and gas
industry. Field trials and implementation studies could be conducted to validate the effectiveness of the
model in real-world heavy oil reservoirs.

 Evaluating the cost-effectiveness of implementing the proxy model compared to traditional simulation
methods is essential. Cost-benefit analyses could provide stakeholders with valuable insights into the
economic feasibility of adopting proxy models for reservoir optimization.

This research work contributes to the ongoing efforts to improve heavy oil recovery techniques by offering a
practical and efficient approach for estimating CRV in steam flooding operations. By leveraging proxy models,
we can mitigate uncertainty and optimize production processes, ultimately driving efficiency and reducing costs
in the oil and gas industry.
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