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Abstract 

Permeability prediction from well log data is a critical aspect of reservoir characterization, providing essential 

insights for effective reservoir management and hydrocarbon recovery. This study investigates the efficacy of 

two distinct modeling approaches—linear regression and artificial neural networks (ANN)—in predicting 

permeability from well log data. The linear regression models explored include Standard Linear Regression, 

Interactions Linear Regression, Robust Linear Regression, while the ANN approach focuses on varying network 

structures to optimize performance. The Interactions Linear Regression model demonstrated strong predictive 

capabilities, with Root Mean Square Error (RMSE) values of 4.47 and an R-squared (R²) value of 0.98, indicating 

a robust fit between the predicted and actual permeability values. However, the ANN model, particularly with a 

structure of 10 neurons in the hidden layer (n-10), outperformed the linear models, achieving an RMSE of 29.90 

and a remarkably high R² value of 0.9996. This underscores the ANN’s superior ability to capture complex, non-

linear relationships within the data. The study provides a detailed analysis of model performance, highlighting 

the strengths and limitations of each approach. The ANN model’s superior accuracy makes it particularly suited 

for complex reservoirs where non-linear interactions are prevalent, while the Interactions Linear Regression 

model offers a simpler, more interpretable alternative for less complex scenarios. Based on these findings, the 

study recommends the adoption of ANN models for intricate reservoir characterization tasks, while linear 

regression models can be utilized for quicker, more straightforward predictions. Furthermore, comparison of this 

model with other existing models were made and this study’s model outperformed. 

Introduction 

The prediction of subsurface physical properties, such as permeability and porosity, is a fundamental challenge 

in reservoir characterization, influencing decisions related to exploration, drilling, and production in the oil and 

gas industry (Nelson 1994; Ezekwe 2010; Edlmann et al. 1996; Zhang 2013; Zhang et al. 1996; Johnson 1963; 

Ahmed 2006; Newman and Martin 1977; Dullien 1992; Byrnes 1994). Accurate permeability prediction from 

well log data can significantly enhance reservoir management by providing critical insights into fluid flow and 

reservoir performance. Traditional methods for predicting these properties often rely on linear regression models, 

which, while straightforward and interpretable, may not fully capture the complex, non-linear relationships 

present in subsurface geological formations (Leiphart and Hart 2001). 

Recent advancements in machine learning have introduced more sophisticated approaches, such as Artificial 

Neural Networks (ANNs), which have shown promise in improving the accuracy of subsurface property 

predictions. The artificial neural network (ANN) technique is one of the latest techniques available to the 

petroleum industry for porosity and permeability prediction (Wills 2019; Jakhar and Kaur 2020; Azim 2020 and 
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2021). ANNs are particularly effective in modeling non-linear relationships, making them a powerful tool for 

predicting properties like permeability in geologically complex reservoirs. The flexibility of ANNs allows them 

to learn intricate patterns in data that linear models might overlook, offering a more nuanced understanding of 

reservoir characteristics (Leiphart and Hart 2001). 

The choice between linear regression models and ANNs is not merely a technical decision but one that can 

significantly impact the accuracy and reliability of permeability predictions. Leiphart and Hart (2001) compared 

the performance of linear regression models and a Probabilistic Neural Network (PNN) in predicting porosity 

from 3-D seismic attributes. They found that while the linear regression model provided a reasonable prediction 

with an R² of 0.74, the PNN offered a better correlation (R² of 0.82) and more geologically realistic porosity 

distribution, particularly in complex geological settings (Leiphart and Hart 2001). Smith et al. (1999) introduced 

a neural network algorithm designed to predict porosity, permeability, and grain density. Their approach utilized 

gamma ray, neutron porosity, and sonic travel time as input variables, and the predicted results were compared to 

actual core data, with errors assessed against specified tolerances. Similarly, Osborne (1992) employed a back 

propagation neural network to estimate permeability using porosity and reservoir flow units as inputs. However, 

the robustness of the model was questionable as it was developed using the same data for both training and testing, 

with only about 10% of the data used for these purposes. Despite this limitation, Osborne found that the neural 

network model's permeability predictions were superior to those obtained from a regression model. Jian et al. 

(1995) conducted a case study comparing genetic and non-genetic approaches for predicting porosity and 

permeability. Additionally, other research has employed various machine learning techniques to predict porosity 

and permeability at different depths (Huang et al. 1996; Huang and Williamson 1997; Helle et al. 2001; 

Rwechungura et al. 2011; Saputro et al. 2016; Ahmadi and Chen 2019). The growing interest in machine learning 

techniques, such as ANNs, reflects their potential to enhance reservoir characterization. These models can handle 

large datasets with multiple variables, identifying patterns and correlations that may not be apparent with 

traditional statistical methods. This capability is particularly useful in the oil and gas industry, where datasets are 

often extensive and complex, requiring advanced techniques for effective analysis and interpretation (leiphart 

2001). Despite the advantages of ANNs, their application in reservoir characterization is not without challenges. 

The "black box" nature of these models can make them less interpretable compared to linear regression models, 

posing a challenge for geologists and engineers who need to understand the rationale behind predictions. However, 

when applied correctly and validated against geological data, ANNs can provide significant improvements in 

prediction accuracy, as demonstrated in various case studies and research (Leiphart and Hart 2001). 

In this study, we aim to explore and compare the efficacy of linear regression and ANN models in predicting 

permeability from well log data. By evaluating these two approaches in a real-world scenario, we seek to identify 

the strengths and limitations of each method, providing insights that can guide the selection of appropriate 

modeling techniques for reservoir characterization. The results of this comparison will contribute to the ongoing 

discourse on the application of machine learning in the geosciences, offering practical recommendations for 

enhancing prediction accuracy in complex reservoir environments. 

Materials and Method 

Software Suites. For this study, two primary software suites were employed: 

1. MATLAB (Version 2024): MATLAB was utilized for various tasks, including the development of 

Linear Regression Models and Artificial Neural Networks (ANNs). The neural network toolbox in 

MATLAB played a crucial role in training, validating, and testing the ANN for permeability prediction. 

2. Microsoft Office Excel (Version 2013): Excel was used for data collation, computation of statistical 

performance indicators, and cross-plot generation for model validation. The Data Analysis ToolPak 

within Excel was specifically employed for plotting Pearson’s Correlation Matrix, aiding in feature 

selection. 
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Data Collection and Description. The dataset used in this study was obtained from open source (Kaggle). The 

dataset consists of log data and core data, with a total of 8,739 data points. The available log data includes gamma 

ray (GR), bulk density (RHOB), and deep induction resistivity (RILD). Corresponding core data for each log data 

point includes core permeability values. Table 1 shows a summary of the data used in this study. Table 2 shows 

the statistical analysis of the dataset used in this study. 

 
Table 1—Summary of well log data used. 

Factor Type Sub-Type Minimum Maximum Mean Std. Dev. 

Gamma ray Numeric Continuous 0.0058 404.29 76.95 33.86 

Bulk density Numeric Continuous 1.19 2.74 2.03 0.4157 

Deep induction resistivity Numeric Continuous 0.2104 11510.6 34.51 251.24 

 

Table 2—Statistical analysis of the dataset employed in this study. 

S/N Parameters Units Min Max Average STD 

1 Gamma Ray, 𝛾 API units 0.006 404.288 76.949 33.859 

2 Bulk Density, 𝜌𝐷 g/cm3 1.191 2.742 2.034 0.416 

3 Deep induction, 𝐼𝐷 Ohm-m 0.210 11510.642 34.512 251.238 

4 Permeability, k mD 0.001 782.431 27.628 25.561 

 

Linear Regression Model. The first approach involved the development of linear regression models using 

MATLAB. The well log data, collected from literature, was used to train various forms of linear regression models, 

including linear, interactions linear, robust linear, and interactions linear models. Each model's performance was 

evaluated to identify the best-fitting model. The general form of the linear regression model used in this study is 

given by: 

Y= βo+Ʃ𝑖=1
𝑘 βiXi+Ʃ𝑖=1

𝑘 βii𝑋𝑖𝑖
2+Ʃ𝑖≠𝑗

𝑘 βijXij+ϵ,...........................................................................................................(1) 

where Y is the dependent variable; Xi are the independent variables; βo is the intercept; βi, βii, βij are the regression 

coefficients determined using least squares techniques. 

MATLAB automatically determined these regression coefficients during model training. The best-performing 

model, based on data fit, was selected and exported from MATLAB for further analysis. 

The selected linear regression model was then evaluated by applying it to the entire dataset. The model’s 

accuracy was assessed by comparing predicted permeability values against measured values using statistical 

performance indicators such as mean absolute error (MAE), root mean square error (RMSE), and the correlation 

coefficient (R2). 
 

Artificial Neural Network (ANN) Model. Before developing the ANN, feature selection was performed to 

identify the most significant input parameters. The Pearson’s Correlation Matrix was plotted using Excel’s Data 

Analysis ToolPak to assess the correlation between input parameters (gamma ray, bulk density, and deep 

induction) and the output parameter (permeability). A threshold correlation coefficient of 0.01 was defined. 

Parameters with a correlation coefficient greater than 0.01 were considered significant. To ensure consistent 

scaling across all input and output parameters, normalization was performed using the following equation: 

𝑋𝑛(0: 1) =
X−Xmin

Xmax−Xmin
 ,......................................................................................................................................(2) 
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where Xn (0:1) is the normalized value of the parameter; X is the actual value of the parameter; Xmin and Xmax are 

the minimum and maximum values of the parameter, respectively. 

The dataset was then used to construct six different ANN structures, each with one hidden layer containing 5 

to 10 neurons. The dataset was randomly divided into three sets: 70% for training, 15% for testing, and 15% for 

validation. Training continued until the following conditions were met: 

1. The MSEs of the training dataset were lower than that of the validation and testing datasets. 

2. The MSEs of the validation and testing datasets were approximately equal. 

3. The R2 increased in the order of testing, validation, and training datasets. 

After training, each ANN structure was evaluated using the entire dataset, and the best-performing ANN was 

selected based on MAE, RMSE, and R2. The selected ANN structure was then transformed into a set of equations 

using the activation functions and the extracted weights and biases from the ANN. 

The developed ANN model was validated by applying the training, validation, testing, and entire datasets to 

predict permeability. Cross-plots of measured versus predicted permeability were generated to evaluate the 

model’s accuracy. These plots included a unit slope line, +10% and -10% deviation lines, and the R2 value. The 

model was considered accurate if 

1. Most of the data points were on the unit slope line and within the +10% and -10% deviation lines. 

2. The R2 value increased in the order of testing, validation, and training datasets. 

Results and Analysis 

Linear Regression Model. Linear Regression is a fundamental statistical technique that models the relationship 

between a dependent variable and one or more independent variables. In this study, three different linear 

regression models were evaluated: standard linear regression, interactions linear regression, robust linear 

regression. Table 3 presents a summary of the performance metrics for the three linear regression models. The 

performance of each model is assessed using various statistical indicators: root mean square error (RMSE), mean 

square error (MSE), coefficient of determination (R²), and mean absolute error (MAE) for both the validation and 

testing datasets. 

Table 3—Performance summary of different linear regression models. 

Dataset type Validation Dataset Test Dataset 

Metrics RMSE  MSE R2 MAE RMSE MSE R2 MAE 

Linear 

Regression 
3.193 10.193 0.981 1.789 4.657  21.689 0.982  1.828 

Interactions 

Linear 

Regression 

3.080 9.484 0.982 1.746 4.466  19.943 0.983  1.797 

 

Standard linear regression model, while straightforward, yielded satisfactory results with an RMSE of 3.1926 

and an R² value of 0.9805 on the validation dataset. However, when tested, the RMSE increased to 4.6572, 

indicating some level of overfitting or a potential lack of generalization to new data. Interactions linear regression 

model, by incorporating interaction terms between the input variables, improved the prediction accuracy, 

evidenced by a lower RMSE (3.0797) and a higher R² value (0.9819) on the validation set. The improvement was 

consistent in the test set, with an RMSE of 4.4658 and an R² of 0.9830, making it one of the best-performing 

linear models.  

Overall, the interactions linear regression model emerged as the top performer among the linear models. The 

inclusion of interaction terms provided a more nuanced understanding of the relationships between the input 

variables, leading to improved predictions. This model's robustness was validated across both the validation and 
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test datasets, indicating its suitability for permeability prediction in this context. Therefore, the interactions linear 

regression model was chosen for further analysis. 

Permeability Response. Figures 1 and 2 illustrate the permeability response for the training data, validation 

data, and test data, respectively. These plots compare the actual permeability values against the values predicted 

by the model. They are essential for evaluating how well the model predicts the actual permeability. The strong 

alignment of data points along the unit slope line in these plots indicates a high degree of accuracy in the model’s 

predictions. Figure 1 shows that the model captured the underlying patterns in the training data very well, with 

most data points lying close to the line of equality. This strong correlation demonstrates that the model has 

successfully learned the relationships in the training data. Figure 2(a) reveals that the model generalizes well to 

unseen data. The proximity of the data points to the line of equality indicates that the model maintains its 

predictive power when applied to new data, reinforcing the model's robustness. Figure 2(b) further validates the 

model's accuracy with the testing data. Consistent performance of training, validation and testing datasets suggests 

that the model is not overfitting and has a strong ability to generalize. 
 

 

Figure 1—Permeability response plot. 

        
(a)Training dataset                                                        (b) Testing dataset 

Figure 2—Validation cross plots. 

The high R² values and low RMSE, MSE, and MAE values across all datasets indicate that the trained model 

is accurate and generalizes well to unseen data. The linear regression model equation derived from the best-

performing model (Interactions Linear Regression) provides a mathematical framework for permeability 
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prediction. The coefficients of the linear regression model used for permeability prediction are detailed in Table 

4, offering insight into the relative influence of each predictor variable and their interactions on permeability.  

Table 4—Coefficients of linear model. 

 Estimate Squared error t-sat* p-value** 

Intercept 109.0659 0.495134 220.2755761 0 

X1 0.118014 0.006208 19.00926865 1.34E-78 

X2 -40.8582 0.2262 -180.628774 0 

X3 0.075784 0.001037 73.05783645 0 

X1*X2 -0.06092 0.002848 -21.3910936 2.19E-98 

X1*X3 0.000154 1.54E-05 9.998604339 2.22E-23 

X2*X3 -0.01466 0.000853 -17.1769302 8.35E-65 

*The t-stat is simply the estimate divided by the squared error. 

**The p-value is associated with the t-stat and shows if a given response variable is significant in the model. 

 

The linear regression model equation derived from these coefficients is expressed as, 

Perm=109.0659+0.1180X1−40.8582X2+0.0758X3−0.0609X1X2+0.000154X1X3−0.0147X2X3,.....................(3) 

Eq. 3 can be applied in practical scenarios for quick and reliable permeability estimation, making it a valuable 

tool for reservoir engineers.  
 

 

Figure 3—Cross plot of actual versus model predicted permeability. 

Figure 3 shows that actual permeability versus model-predicted permeability reveals a strong correlation 

between the measured and predicted values, with most of the data points lying close to the unit slope line. It 

further confirms the model’s accuracy and its potential for practical application in predicting permeability. 
 

Artificial Neural Network (ANN) Model. Figure 4 presents the Pearson’s correlation matrix for all parameters 

in the dataset, providing insight into the relationships between input parameters (gamma ray, bulk density, and 

deep induction) and the output parameter (permeability). 
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Figure 4—Pearson’s correlation matrix for all parameter in the dataset. 

 

Bulk density exhibited a strong negative correlation with permeability, indicating that as bulk density increases, 

permeability tends to decrease. This is consistent with geological principles, where higher density formations 

often have lower porosity and permeability. Deep induction showed a positive correlation with permeability, 

suggesting that higher values of deep induction are associated with higher permeability, likely due to the presence 

of more conductive, porous formations. Gamma rays had a weak correlation with permeability, implying that its 

influence on permeability is less significant compared to the other variables. These correlations are essential for 

understanding the influence of each parameter on the output and guiding the feature selection process. 

ANN Structure and Performance. Six different ANN structures were constructed and evaluated based on 

8,739 data points. The statistical performance of each structure is summarized in Table 5. 

 

Table 5—Statistical performance of ANN structures. 

ANN Structure MAE RMSE R2 

n-5 1.0818 80.9924 0.9931 

n-6 0.8362 75.7039 0.9963 

n-7 0.6145 65.2532 0.9980 

n-8 0.7439 76.8524 0.9962 

n-9 0.5985 71.9866 0.9979 

n-10 0.1445 29.9016 0.9996 

 

 

Among the six ANN structures, the n-10 structure achieved the best performance. It achieved the lowest RMSE 

(29.9016) and the highest correlation coefficient (0.9996), indicating an exceptionally accurate model with 

minimal prediction error. This structure outperformed the linear models, highlighting the strength of ANNs in 

capturing complex, non-linear relationships in the data.  



Improved Oil and Gas Recovery 
 
 

8 

The architecture of the n-10 ANN, depicted in Figure 5, includes an optimized number of neurons and layers 

that enable the model to learn the intricate patterns in the well log data. The ability of the ANN to model non-

linear relationships gives it an edge over linear regression models, particularly in complex reservoir environments. 

 

 

Figure 5—Structure of the best trained ANN. 

ANN Model Equation. The ANN model developed in this study is represented by a series of equations (Eq. 4 

to 9) that describe the transformation of input variables through the network's layers to produce the final 

permeability prediction. 

kp =
1

2
((𝑏2 + 𝐿𝑊2 ∙ tanh(𝑏1 + 𝐼𝑊1 ∙ Xn(−1:+1) )) + 1) (kmax − kmin) + kmin,..................................................(4) 

where, 

Xn(−1:+1) = 2 [
𝑋𝑛(0:1)−Xmin

𝑋𝑚𝑎𝑥−Xmin
]-1,...............................................................................................................................(5) 

Xn(0:1) =
X−Xmin

Xmax−Xmin
 ,..........................................................................................................................................(6) 

X = [γ  ρD  ID]T ,................................................................................................................................................(7) 

Xmin = [γmin  ρDmin  IDmin]T,...........................................................................................................................(8) 

Xmax = [γmax  ρDmax  IDmax]T,.........................................................................................................................(9) 

 

The weights and biases extracted for the output layer (LW2 and b2) and the hidden layer (IW1 and b1) used in 

the model are shown in Tables 6 and 7, respectively. 

Table 6—Key parameters for the output layer used in Eq. 4. 

Extracted weight vector (LW2) Bias (b2) 

0.2514 -1.4538 -1.7993 1.2766 0.4177 2.6805 0.5586 1.3820 -1.4926 2.3865 -0.3288 
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Table 7—Key parameters for the hidden layer used in Eq. 4. 

Extracted weight matrix (IW1) Bias vector (b1) 

0.7447 -0.9934 2.7596 -2.0319 

0.2320 0.3227 0.7401 -0.8480 

-0.1124 -0.2926 0.0548 0.4594 

-0.5512 3.7046 -6.9747 -10.0962 

-0.6787 2.3096 1.5510 -0.7071 

0.6146 -3.1447 -0.3321 2.3459 

-0.1447 -0.5907 1.1009 1.2524 

0.5512 -3.9675 10.4580 13.5564 

0.0538 0.2011 -0.7062 0.1829 

-0.6129 3.5097 -2.2764 -5.0852 

 

These equations encapsulate the weights, biases, and activation functions used in the model, providing a 

detailed mathematical framework for understanding the ANN’s operation. The ANN model equation (Eq. 4) is 

more complex than the linear regression model equation (Eq. 1), reflecting the higher complexity and flexibility 

of ANNs. This complexity allows the ANN to achieve higher accuracy, especially in cases where the relationships 

between variables are not purely linear. 

Model Validation and Performance Analysis. The performance of the ANN model is further validated through 

cross-plots of measured versus predicted permeability values for the training, validation, and testing datasets are 

presented in Figures 6 through 8. The alignment of data points along the unit slope line in Figure 6 indicates that 

the ANN has effectively learned the patterns in the training data, resulting in highly accurate predictions. The 

strong correlations between predicted and actual values in Figures 7 and 8 confirm that the model generalizes 

well to new data, maintaining high accuracy across different datasets, confirming the model's accuracy.  

 
 

 

Figure 6—Measured and predicted permeability cross-plots based on the training dataset (6117 data points). 
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Figure 7—Measured and predicted permeability cross-plots based on the validation dataset (1311 data points). 

 

Figure 8—Measured and predicted permeability cross-plots based on the testing dataset (1311 data points). 

 

Figure 9—Measured and predicted permeability cross-plots based on the entire dataset (8739 data points). 
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The cross-plot based on the entire dataset (8,739 data points) in Figure 9 further demonstrates the robustness 

of the ANN model in predicting permeability across diverse datasets. The high density of data points along the 

unit slope line across such a large dataset is a evidence of the model's reliability and effectiveness in real-world 

applications.   

The comparison across the three studies highlights differences in modeling approaches, model types, and 

performance (Table 8). Leiphart and Hart (2001) utilized a combination of Linear Regression and Probabilistic 

Neural Network (PNN), with PNN achieving the best performance with an R²  value of 0.82. This model 

demonstrated better geological realism in predicting porosity distribution, effectively capturing non-linear 

relationships between seismic attributes and porosity. In contrast, Azim and Aljehani (2022) employed an 

Artificial Neural Network (ANN) using the back-propagation learning algorithm implemented in FORTRAN. 

Their ANN model achieved an R² value of 0.94 and was particularly robust in predicting rock permeability with 

minimal wireline log data. In this study, a more diverse set of models was explored, including Standard Linear 

Regression, Interactions Linear Regression, and ANN with varying structures. The best-performing model was 

the ANN with 10 neurons in the hidden layer (n-10), achieving an exceptional R² value of 0.9996. This model 

provided superior accuracy in predicting permeability and was highly effective in capturing complex, non-linear 

relationships in well log data, surpassing the predictive capabilities of the models from the other two studies. 

Table 8—Comparison of Modeling Approaches Across Studies. 

Feature Leiphart and Hart (2001) Azim and Aljehani (2022) This Study 

Modeling 

Approaches 

Linear Regression and 

Probabilistic Neural Network 

(PNN). 

ANN model based on the back 

propagation learning algorithm 

using the FORTRAN 

language. 

Linear Regression and 

Artificial Neural Network 

(ANN). 

Model 

Types 

Standard Linear Regression, 

Probabilistic Neural Network 

(PNN). 

ANN model uses a weight 

visualization curve technique. 

Standard Linear Regression, 

Interactions Linear 

Regression, and Artificial 

Neural Network (ANN) with 

varying structures. 

Best 

Performing 

Model 

Probabilistic Neural Network 

(PNN) with R² = 0.82. 
ANN with R² = 0.94. 

ANN with 10 neurons in the 

hidden layer (n-10) with R² = 

0.9996. 

Performance 

Metrics 

Linear Regression: R² = 0.74. 

PNN: R² = 0.82. 
R² = 0.94. 

Interactions Linear 

Regression: R² = 0.983. 

ANN (n-10): R² = 0.9996 

Strengths of 

Best Model 

Better geological realism in 

predicted porosity distribution; 

higher accuracy in capturing non-

linear relationships between 

seismic attributes and porosity. 

ANN model is robust and has 

strong capability of predicting 

rock permeability using a 

minimum number of wireline 

log data. 

Superior accuracy in 

predicting permeability; 

effective at capturing complex, 

non-linear relationships in well 

log data. 

Conclusions 

In conclusion, this study demonstrates the effectiveness of both linear regression and artificial neural network 

models in predicting permeability from well log data. The interactions linear regression model and the n-10 ANN 

structure were identified as the best-performing models in their respective approaches. While the ANN model 
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demonstrated superior accuracy and robustness, the linear regression models, particularly the interactions model, 

offered valuable insights into the relationships between variables. The models developed in this study can be 

effectively applied in reservoir characterization, leading to improved decision-making in the oil and gas industry. 

Recommendation 

Based on the results and discussion of the modeling approaches for predicting permeability from well log data, 

the following recommendations are proposed: 

1. Adoption of Artificial Neural Networks (ANN) for Complex Reservoirs: The ANN model, particularly the 

n-10 structure, demonstrated superior accuracy in predicting permeability, especially in complex reservoirs 

where non-linear relationships prevail. This model should be prioritized for reservoir characterization in 

such environments. 

2. Use of Interactions Linear Regression for Simpler Reservoirs: The Interactions Linear Regression model 

performed well, with relatively high accuracy and strong generalization. This model is more interpretable 

and computationally less intensive than ANN models, making it suitable for reservoirs where relationships 

are expected to be more linear. 

3. Integration of Both Modeling Approaches: Each modeling approach offers unique strengths--ANN for 

capturing complex, non-linear relationships, and linear regression for simplicity and interpretability. 

Integrating both approaches could provide a more comprehensive understanding of reservoir behavior. A 

hybrid approach can be employed where both models are run in parallel. The linear regression model can 

be used for initial, quick assessments, while the ANN model provides a more detailed analysis. This strategy 

would ensure that different aspects of reservoir characteristics are captured, enhancing overall decision-

making. 
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