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Abstract 

Accurate natural gas demand forecasting is critical for ensuring efficient resource allocation, infrastructure 

planning, and energy security. This study presents the implementation of a NARX artificial neural network (ANN) 

model using MATLAB (R2022b) to forecast Nigeria’s natural gas demand. The NARX model, known for its 

capability to handle nonlinear time series data with external inputs, was applied using key variables such as 

population, GDP per capita, natural gas reserves, and price, with the target output being natural gas demand. The 

methodology involved data sourcing, cleaning, and normalization, followed by model training with the 

Levenberg-Marquardt (LM) algorithm in MATLAB, validation, and testing. Three different NARX 

configurations (NARX-1, NARX-2, and NARX-3) were tested, with sensitivity analyses conducted on the 

number of time delays and neurons to optimize the model's structure. Performance was evaluated using metrics 

like mean squared error (MSE) and coefficient of determination (R2), with results indicating that the NARX-1 

model with 20 neurons achieved the best performance, boasting an R2 of 0.988. The result showed that natural 

gas demand in Nigeria has steadily increased over time, with fluctuations in response to global economic crises 

like the 2008 recession and the COVID-19 pandemic. Sensitivity analyses revealed that the NARX-1 

configuration, with 20 neurons, provided the most accurate forecasting results based on its low MSE of 0.003396 

and high R2 value of 0.988155, outperforming other models. These findings demonstrate the effectiveness of the 

NARX model for forecasting natural gas demand, making it a valuable tool for energy planning and decision-

making in Nigeria. 

Introduction 

Energy plays a crucial role in the progress of societies and global economies, with its significance increasing due 

to factors such as economic growth, population expansion, and rapid urbanization worldwide (Toren 2023). There 

is a greater emphasis on energy modelling and forecasting within the energy sectors due to the government’s strict 

energy production regulations and growing environmental concerns. A reliable and consistent energy supply is 

crucial for a nation's economic and societal advancement. Therefore, policymakers need to understand the future 

energy needs to develop a plan for the country's energy provision (Sharma et al. 2021). Predicting energy 

consumption and demand, considering limitations such as resource availability, fuel costs, capacity needs, and 

investments, has become essential for managing the rising trend of energy use. 
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Natural gas has long been considered a “cleaner” alternative to traditional fossil fuels like crude oil and coal 

due to its lower carbon footprint (Mohammad et al. 2021). It is often regarded as a more reliable power generation 

option compared to renewable sources such as solar and wind, owing to its consistent availability and ability to 

provide stable power output regardless of weather conditions (Lehner et al. 2023). Given its reliability and 

accessibility, natural gas is favoured for power generation, urban heating, public transportation, and 

manufacturing. As the global emphasis on decarbonization and sustainability grows, natural gas is expected to 

continue playing a significant role as an energy source. It is anticipated to play a pivotal part in the transition from 

fossil fuels to "green" and renewable energies, contributing significantly to the social and economic progress of 

nations and aligning with sustainable energy trends (Kuzemko et al. 2020; Zhukovskiy et al. 2021; Zaytsev et al. 

2022).  

The energy shortage in Nigeria has been a longstanding concern for both the government and the populace 

(Omidih and Omotehinse 2020). Various interventions at the community, state, and national levels have had 

limited impact on addressing the energy challenges (Endurance et al. 2021). The Federal Government of Nigeria 

has made efforts to diversify the energy mix to include conventional energy generation, renewable energy 

technologies (RETs), and nuclear energy (Diemuodeke et al. 2021). However, despite these initiatives, the issue 

of energy scarcity persists, with demand for electricity outpacing supply (Bassey et al. 2022). The gas sub-sector, 

including power generation, petrochemicals, cement, and residential applications, has been identified as a critical 

area capable of driving the country's economic development (Agbonifo 2016).  

Natural gas is among Nigeria's abundant indigenous energy sources, making it essential to grasp how its 

demand will change to support rapid economic growth (Ekwueme et al. 2022). Given the growing importance of 

natural gas in the global energy landscape, there exists an intriguing research opportunity in developing 

quantitative demand models for this essential energy source (Cai et al. 2021; Liu et al. 2023).  

Forecasting natural gas demand holds immense importance in Nigeria's energy policy and planning. An 

inaccurate estimation of natural gas consumption can have significant repercussions, leading to economic losses 

for end consumers and mismanagement of supplies and infrastructure. This misestimation can result in disruptions 

in natural gas supply, causing substantial economic costs. For instance, disruptions in natural gas supply have led 

to losses in productivity in manufacturing industries, with reported losses amounting to billions of dollars (Duhalt 

2022). Moreover, the nexus between natural gas consumption and economic growth is non-linear, emphasizing 

the importance of accurate estimations to ensure sustainable economic development (Sohail et al. 2021). 

Natural gas demand forecasting is a crucial aspect of energy planning, particularly in an industry marked by 

risks and uncertainties. It involves utilizing models to analyse historical data and offer insights into future energy 

demand trends (Petkovic et al. 2021). This process primarily deals with time-series forecasting, focusing on data 

points sampled at regular intervals (Hurn et al. 2023). The classification of natural gas demand modelling involves 

criteria such as the forecasting horizon, tools used, data types, and the specific area of application (Hong 2023). 

The forecasting horizon can range from hourly and daily to monthly, annually, or a combination of these periods. 

Methods for forecasting natural gas demand include analytical, statistical, artificial intelligence, and hybrid 

approaches (Manowska et al. 2021). Analytical or physical methods heavily rely on variables influencing natural 

gas consumption, including weather-related parameters (temperature, humidity, sunshine, wind speed), economic 

factors (Gross Domestic or National Product, gas prices), and demographic factors (general population, household 

composition, birth rate). These methods leverage mathematical equations to model interactions between input 

parameters and natural gas demand (Delcroix et al. 2021). However, due to the inherent non-linear nature of 

natural gas demand as a time series problem, analytical modelling becomes increasingly challenging (Rahmoune 

et al. 2021). This complexity has driven the development of new research techniques, such as statistical methods 

and artificial intelligence methods, as well as hybrid approaches, to address the evolving demands of forecasting 

in the energy sector. 

Artificial neural networks (ANNs) are widely used for natural gas demand forecasting, alongside other AI 

techniques like support vector machines, adaptive neurofuzzy inference systems (ANFIS), long short-term 

memory (LSTM), and meta-heuristic algorithms such as genetic algorithms and particle swarm optimization 
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algorithms (Panapakidis and Dagoumas 2017). ANNs are preferred due to their superior accuracy, especially in 

handling nonlinear datasets without predefined hypotheses. Understanding ANN architecture, including the 

combination and activation functions, is essential for effective utilization. Various ANN algorithms, such as 

multilayer perceptron (MLP), radial basis function neural network (RBF), and general regression neural network 

(GRNN), are commonly used for energy demand forecasting (Aruta et al. 2022). Dynamic ANNs, including 

recurrent neural networks like NAR, NARX, and LRN, are also effective in estimating nonlinear input-output 

correlations in time sequence data (Hassan et al. 2021). 

In this study, we employ a non-linear autoregressive with exogenous input (NARX) neural network model for 

natural gas demand forecasting. This model utilizes a multivariate approach incorporating input variables such as 

population, GDP per capita, average natural gas price, and gas reserves, with data specific to Nigeria. 

Materials and Method  

Materials. The implementation of the NARX ANN modelling was conducted using MATLAB (R2022b). 

MATLAB has various toolboxes specifically designed for neural network modelling, which covers areas such as 

neural net fitting, clustering, pattern recognition, and time series models. Neural net time series toolbox (in 

MATLAB) was deployed to address this nonlinear time series problem.  

 

Methods. The method employed in this study involves modelling and simulation to achieve the desired objectives. 

Specifically, the NARX model principle, its implementation strategy, and simulation processes are described in 

detail. The overall methods can be succinctly summarized through the block diagram provided in Figure 1.  

 
Figure 1—Methodology flowchart. 

 The process begins with an explanation of the NARX model and its fundamental equation, followed by data 

preparation steps like sourcing, cleansing, and normalization to refine the dataset. Then, modelling involves 

training, validation, and testing, with sensitivity analyses determining the optimal model structure for forecasting 

based on input variables.  

 

ANN NARX Model. The NARX neural network, which stands for Non-linear Autoregressive Exogenous with 

External input, is a dynamic tool for time series modelling. It distinguishes itself by incorporating external inputs, 

enabling it to analyse relationships among current and past values of a time series and external data. With its high 

memory capacity, it effectively captures time-varying patterns in datasets (Alsumaiei 2020). Eq. (1) provides the 

mathematical representation of the NARX model, predicting the output f(t) based on input parameters x(t) and 

past values of the series y(t) and x(t). 

f(t) = f[x(t − 1), … x(t − d), y(t − 1) … . , y(t − d)],....................................................................................(1) 

The NARX model operates on the principle that the current value of y(t) is influenced by past values of both 

y(t) and x(t) (Necesito et al. 2022). In this model, inputs are linked to network weights, and adjustments to hidden 

neurons occur iteratively for different time delays. Network configuration is chosen to minimize mean square 

error (MSE). The hidden layer includes weight matrices connecting to other layers, each associated with specific 
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inputs and biases based on weight function rules. The net input, formed by combining the outputs of these weight 

functions with the bias using the net input function rule, drives the network.   

The NARX network is trained using MATLAB's Neural Net Time Series Toolbox, employing the hyperbolic 

tangent sigmoid function for activation in both hidden and output layers. Performance is assessed using metrics 

like MSE and R2. Successful training is indicated by minimal MSE and a high R2 value, ensuring the model's 

effectiveness for forecasting.  
 

Data Sourcing and Preparation. The dataset utilized in this study includes key inputs such as Nigeria ’s 

population, GDP per capita, natural gas price, and reserves, with the target output being natural gas consumption 

demand. Covering the period from 1975 to 2023, the data were obtained from multiple credible sources: 

population figures from the National Population Commission (NPC), GDP per capita data from the National 

Bureau of Statistics (NBS), natural gas prices from the Henry Hub Natural Gas Spot Price statistics, natural gas 

reserves from the Nigerian Upstream Petroleum Regulatory Commission (NUPRC), and natural gas demand 

metrics from the Nigeria Gas Company (NGC). This comprehensive dataset serves as the foundation for modeling 

and forecasting natural gas demand in Nigeria. 

Before training, thorough data cleaning and normalization were conducted to rectify errors and eliminate noisy 

data points. The specific dataset used for simulation is detailed in Table 1. The simulation dataset comprises 

forty-nine data points for both the input and target output datasets. 

Table 1—Simulation data. 

Year 
Population, 

billion 

GDP Per Capita 

M$/person 

NG Reserves 

TCM 

NG Price, 

$/Mmbtu 

NG Demand, 

BCM 

1975 0.0710  0.442 1.2546 0.43 0.4000  

1976 0.0727  0.562 1.24611 0.58 0.6300  

1977 0.0746  0.541 1.224 0.79 0.5000  

1978 0.0765  0.532 1.203 0.91 0.3800  

1979 0.0786  0.668 1.183 1.18 1.3800  

1980 0.0807  0.88 1.16114 1.59 1.0702  

1981 0.0828  2.188 1.14698 1.98 2.1524  

1982 0.0848  1.845 1.38501 2.47 1.4160  

1983 0.0868  1.224 1.37 2.59 2.2996  

1984 0.0888  0.903 1.355 2.66 2.7471  

1985 0.0908  0.882 1.34 2.51 3.0586  

1986 0.0929  0.639 2.4 1.94 3.2852  

1987 0.0952  0.598 2.407 1.66 3.7015  

1988 0.0974  0.55 2.476 1.68 3.7706  

1989 0.0998  0.474 2.832 1.7 4.7007  

1990 0.1022  0.568 2.84 1.7 3.7100  

1991 0.1046  0.503 3.4 1.49 4.7579  

1992 0.1071  0.477 3.7162 1.77 4.9007  

1993 0.1096  0.27 3.683 2.12 5.0507  

1994 0.1121  0.321 3.45 1.92 4.5506  

1995 0.1147  0.407 3.474 1.72 5.1906  

1996 0.1173  0.46 3.475 2.73 5.4608  
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1997 0.1201  0.479 3.483 2.48 5.8508  

1998 0.1229  0.468 3.512 2.09 5.9008  

1999 0.1257  0.496 3.512 2.27 6.2109  

2000 0.1287  0.565 4.106 4.31 6.7310  

2001 0.1317  0.587 4.6327 3.96 6.2109  

2002 0.1348  0.734 4.9973 3.36 6.3609  

2003 0.1380  0.787 5.055 5.49 8.5112  

2004 0.1413  0.993 5.2289 5.89 9.3213  

2005 0.1447  1.25 5.1518 8.92 10.3615  

2006 0.1483  1.652 5.207 6.72 10.9215  

2007 0.1519  1.876 5.292 6.98 10.6015  

2008 0.1557  2.228 5.292 8.86 12.2767  

2009 0.1597  1.884 5.292 3.95 9.8457  

2010 0.1637  2.28 5.1775701 4.39 5.0307  

2011 0.1679  2.505 5.1755877 4 5.4008  

2012 0.1722  2.728 5.1183801 2.75 14.3070  

2013 0.1766  2.977 5.1070518 3.72 15.6932  

2014 0.1819  3.201 5.3239875 4.37 18.3704  

2015 0.1871  2.68 5.2842779 2.61 18.4446  

2016 0.1924  2.145 5.4752043 2.49 18.1679  

2017 0.1977  1.942 5.62687 2.96 12.7952  

2018 0.2030  2.126 5.6749974 3.16 10.7556  

2019 0.2033  2.334 5.626 2.57 12.7050  

2020 0.2083  2.075 5.674 2.01 14.3610  

2021 0.2134  2.066 5.76 3.85 15.1652  

2022 0.2185  2.184 5.832 6.45 15.6425  

2023 0.2262  0.211 5.91 2.57 15.9922  

 

The NARX Modelling Technique. The modelling and forecasting of average annual natural gas demand was 

conducted using the NARX Model. Three distinct NARX configurations, denoted as NARX-1, NARX-2, and 

NARX-3, were analysed, with the numerical suffix indicating the number of time delays in each configuration. 

These time delays play a crucial role in measuring dataset autocorrelation, filtering nonlinear data, and aiding in 

prediction. Moreover, sensitivity analyses were performed on the number of neurons, exploring configurations 

with 5, 10, 15, and 20 neurons, respectively. The performance of the NARX models was systematically compared, 

and the most effective model, determined by considering both time delays and the number of neurons, was 

selected for forecasting. The NARX network was trained using the Levenberg-Marquardt training algorithm, 

involving multiple iterations and investigations. 

The dataset was divided into 70% training, 15% validation, and 15% testing data. The network structure for 

the NARX model, considering a time delay of 1 and 20 neurons, is depicted in Figure 2(a), while the step-ahead 

predictions (forecasting) are illustrated in Figure 2(b). Figure 2(a) illustrates the structure of the training model, 

with x(t) representing the input data and y(t) indicating the target (actual data) at 1. The artificial neural network 

time series model engages in simulation by analyzing the input and target to create a model that generates the 

modeled target y(t) from the provided output data during training. Implementation of the NARX model involves 

introducing a time delay, which excludes a certain number of data points from the beginning of the dataset. 

Specifically, a time delay of 1:1 means one data point was omitted from both the predicted output response (x(t)) 
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and the actual response (y(t)) after training. Additionally, the step-ahead prediction of the NARX model 

incorporates an additional future value, one step ahead, into the predicted output data, accounting for the 

forecasted value. 

 

  

(a) Open-loop view for training                                                    (b)One-step ahead prediction view 

Figure 2—ANN NARX Neural network. 

 

Model Performance Evaluation Metrics. The model's performance was evaluated using several metrics, such 

as mean squared error (MSE), coefficient of determination (R2), root-mean-square error (RMSE), mean absolute 

error (MAE), and mean absolute percentage error (MAPE). 

The formulas for these statistical parameters are as follows: 

R2 =
∑ (xa,i−xp,i)

2n
i=1

∑ (xp,i−xa,ave)
2n

i=1

,........................................................................................................................................(2) 

MSE =
1

n
∑ (xp,i − xa,i)

2n
i=1 ,...............................................................................................................................(3) 

RMSE = √
1

n
∑ (xp,i − xa,i)

2n
i=1 ,.........................................................................................................................(4) 

MAE =
1

n
∑ |(xa,i − xp,i)|n

i=1 ,.............................................................................................................................(5) 

MAPE =
1

n
∑ |(xa,i−xp,i)|n

i=1
1

n
∑ xa,i

n
i=1

....................................................................................................................................(6) 

Where n is the number of experimental runs, xp,i is the estimated values, xa,i is the experimental values, xa,ave is 

the average experimental values.  

Results and discussions 

Time Series Data Trends. The trends in the time series data were evaluated by plotting both the input and target 

output variables against the year. Figure 3 displays the trend of the time series data. In general, the analysis 

reveals a rising trend in natural gas demand over time, with notable declines in 2010, 2019, and 2020 due to global 

economic downturns such as the 2008 recession and the COVID-19 pandemic which impacted various economies 

and led to reduced natural gas prices in 2009. This demand is paralleled by continuous growth in population and 

natural gas reserves. Additionally, the GDP per capita of Nigeria shows fluctuations over time, with distinct 

phases of growth and decline, ultimately stabilizing at a relatively constant level. 
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Figure 3—Trend of time series data. 

 

Modelling Sensitivity Analysis. Sensitivity analyses were conducted to examine time-delays and the number of 

neurons, aiming to evaluate the parametric sensitivity of the models and understand the relationship between input 

variables and the target output response. Table 2 provides a summary of the results for the NARX-1 model. The 

analysis of Table 2 reveals that the optimal number of neurons for the NARX-1 model configuration is twenty. 

This conclusion is drawn from the more favorable training, validation, and testing mean squared error (MSE) and 

coefficient of determination (R2) values compared to other neuron sizes. Specifically, in the NARX-1 simulation 

with twenty neurons, it was observed that the training MSE was lower than that for validation and testing. 

Table 2—Detailed analysis of NARX-1 configuration to determine the optimal hidden neuron. 

Hidden Neurons 
Training Validation Testing 

MSE R2 MSE R2 MSE R2 

5 0.01246 0.95645 0.00205 0.98430 0.05489 0.86708 

10 0.03551 0.90439 0.02557 0.86814 0.39930 0.97414 

15 0.00012 0.99602 0.01098 0.99600 0.06121 0.94387 

20 0.00030 0.99879 0.00624 0.98866 0.00443 0.98624 

 

From Table 3, it is evident that the optimal configuration for NARX-2, based on the training, validation, and 

testing MSE and R2 values, indicates that the most suitable number of neurons is twenty. This selection is justified 

by its combination of the lowest MSE and favorable R2 value. Therefore, for NARX-2, it is recommended to 

utilize twenty neurons to achieve a representative and accurate forecast.  
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Table 3—Detailed analysis of NARX-2 configuration to determine the optimal hidden neuron. 

Hidden Neurons 

Training Validation Testing 

MSE R2 MSE R2 MSE R2 

5 0.01272 0.95707 0.00546 0.96256 0.03637 0.85711 

10 0.00867 0.97535 0.01063 0.96176 0.08585 0.90522 

15 0.03552 0.91218 0.01640 0.96999 0.06402 0.95897 

20 0.00936 0.97063 0.01877 0.98297 0.06082 0.95263 

 

Table 4 indicates that the NARX-3 model performs best with ten neurons, based on lower MSE values and 

higher R2 values across training, validation, and testing datasets. However, a comprehensive examination of 

Tables 2, 3, and 4 demonstrates that the NARX-1 model consistently outperforms others in terms of MSE and R2 

values. This specific setup consistently achieves R2 values exceeding 0.99 and MSE consistently below 0.01, 

indicating exceptional performance. Consequently, the NARX-1 model with twenty neurons is chosen as the 

optimal configuration for forecasting natural gas demand.  

Table 4—Detailed analysis of NARX-3 configuration to determine the optimal hidden neuron. 

Hidden Neurons 
Training Validation Testing 

MSE R2 MSE R2 MSE R2 

5 0.05716 0.86065 0.10037 0.68184 0.01806 0.98133 

10 0.00245 0.99776 0.05905 0.76065 0.01373 0.97828 

15 0.00032 0.99960 0.12961 0.73309 0.03558 0.85381 

20 0.02158 0.97164 0.02063 0.83458 0.19178 0.61553 

 

As shown in Figure 4, the increase in hidden neurons led to different mean squared errors (MSE) for the 

training, validation, and testing phases of the NARX network. Notably, the testing MSE appeared significantly 

larger than that of the training and validation sets, potentially due to the smaller dataset volume allocated for 

testing. The consistently low testing MSE values, closely aligned with the training MSE, suggest accurate model 

performance by the NARX network. Specifically, the NARX model with a 1-time delay exhibited the lowest 

MSE values for both training and validation, highlighting its superior performance. 
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(a) NARX-1                                                                             (b) NARX-2  

 

(c) NARX-3 

Figure 4—Determination of hidden neurons for NARX model using different models. 

 

Performance Evaluation of NARX Models. This section evaluates the performance of three NARX models: 

NARX-1, NARX-2, and NARX-3. Throughout the training process, the entire dataset experienced multiple passes 

referred to as epochs. An epoch serves as a parameter denoting the number of passes the LM algorithm makes 

over the complete training dataset. Each epoch involves a series of iterative processes to assess the model's 

performance, continuing until optimal performance is attained. In Figure 5(a), the dataset underwent 12 epochs, 

while for Figures 5(b) and 5(c), the datasets underwent 8 and 7 epochs, respectively.  
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 (a) NARX-1                                                                              (b) NARX-2 

 

(c) NARX-3 

Figure 5—Determination of the best validation performance for various models. 

In Figure 5, the validation performance of NARX-1, NARX-2, and NARX-3 models is analyzed. The Mean 

Squared Error (MSE) decreases across training, validation, and testing datasets with increasing epochs for each 

model. Notably, the optimal performance for NARX-1 is observed at epoch 8 with an MSE of 6.24 × 10-3, for 

NARX-2 at epoch 2 with an MSE of 1.134 ×10-2, and for NARX-3 at epoch 3 with an MSE of 3.36 × 10-2. The 

decreasing trend of MSE curves indicates prevention of overfitting.   

The time series plots in Figures 6(a) to (c) offer detailed insights into the NARX models in terms of output 

and target parameters. In Figure 6(a), it is evident that the NARX algorithm effectively trains the dataset, with 

residual errors from the training, validation, and testing outputs and targets all falling below 10%. This indicates 

that the NARX-1 model is well-suited for modelling the prediction of natural gas demand. Similarly, the NARX 

model with a time delay of two, as depicted in Figure 6(b), demonstrates significant potential in predicting both 

targets and outputs. The training, validation, and testing of the dataset show minimal residual errors, confirming 

(b) 
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the suitability of NARX-2 network configurations for time series modelling of natural gas demand. Figure 6(c) 

further illustrates that the NARX model with a 3-time delay configuration is also appropriate for predicting natural 

gas demand, supported by the minimal residual errors observed in the training, validation, and testing outputs and 

targets. 

  

(a)     NARX 1                                                                               (b)NARX 2 

 

(c) NARX-3 

Figure 6—Time series-based prediction of average annual natural gas demand for various models. 

 

Pattern Trend Analysis of NARX Models. This section examines a regression analysis comparison between 

actual data and predicted target output responses for the three NARX models: NARX-1, NARX-2, and NARX-3. 

Figure 7 illustrates the non-linear fitting of actual data and the predicted output responses of the NARX-1 model. 

The figure demonstrates the capability of the Levenberg-Marquardt training model to fit the actual data to the 

predicted target output based on the input variables. 
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Figure 7—Comparison of the pattern of actual and predicted average natural gas demand for the NARX-1 model. 

Observing Figure 7 reveals that the predicted response output from the NARX-1 model closely mirrors the path 

of the actual data used for training, with minimal deviations. This observation suggests that the model effectively 

captures the general trend and patterns of the actual data and input variables. The close alignment between the 

trend lines indicates that the model has successfully predicted the target output values with a high degree of 

accuracy. Therefore, Figure 7 illustrates that the NARX-1 model, trained by the Levenberg-Marquardt algorithm, 

has effectively modelled the nonlinear relationship between the variables (including population, GDP per capita, 

natural gas reserves, and the average annual natural gas price as inputs, and the annual average natural gas demand 

as the target output).  

Figure 8 displays the trendline pattern of the NARX-2 model, illustrating the relationship between the actual 

data and the predicted target output. Trained using the Levenberg-Marquardt algorithm, the model closely aligns 

its predictions with the actual data, indicating successful pattern recognition and effective capture of the input-

output relationship. 
 

 

Figure 8—Comparison of the pattern of actual and predicted average natural demand for the NARX-2 model. 
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Figure 9 compares the pattern trendlines of the actual data with the predicted target output of the NARX-3 

model, demonstrating its accurate modelling. This highlights the robustness of the NARX-3 model in effectively 

capturing the input-output relationship.   
 

 

Figure 9—Comparison of the pattern of actual and predicted average natural demand for the NARX-3 model. 

Table 5 indicates that the NARX-1 model outperforms NARX-2 and NARX-3 across all metrics considered. 

Notably, NARX-1 demonstrates a lower MSE (0.003396) and a higher R2 (0.988155) compared to the other 

models. Additionally, NARX-1 exhibits lower RMSE, MAE, and MAPE values. Consequently, NARX-1 is 

chosen for forecasting, while NARX-3 performs the least. These findings contrast with those of (Ayodele et al. 

2021), who found better performance in NARX models with higher time-delays. 

Table 5—Overall performance summary of the NARX models. 

Metric NARX-1 NARX-2 NARX-3 

MSE 0.003396 0.011074 0.011862 

RMSE 0.058271 0.105233 0.108911 

MAE 0.025333 0.041191 0.049559 

MAPE 0.079376 0.080255 0.145622 

R2 0.988155 0.961953 0.961411 

 

Forecasting Performance of NARX Model. The NARX-1 model, identified as the best-performing among the 

NARX models, was chosen for forecasting average annual natural gas demand. Table 6 presents the forecasted 

values of future average annual natural gas demand based on the predictions made by the NARX-1 model.  Table 

6 displays the projected values of average annual natural gas demand over a 10-year period from 2024 to 2033. 

The forecasted natural gas demand ranges between twelve to eighteen billion cubic meters (bcm) for the specified 

decade.  
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Table 6—Forecasted average annual natural gas demand. 

Year Forecast, bcm 

2024 12.58929 

2025 14.76996 

2026 16.95775 

2027 14.0357 

2028 16.17459 

2029 15.83146 

2030 16.14099 

2031 16.56538 

2032 15.34007 

2033 17.71746 

 

Table 7 compares the performance of the NARX model in this study with similar studies in the literature, 

specifically focusing on forecasting energy demand. The NARX-ANN model utilized in this study demonstrates 

robust predictability, outperforming many other models with an R2 value of 0.988. This underscores the accuracy 

of the average natural gas demand forecast, with minimized prediction errors. 

Table 7—Comparison of the performance of the NARX model in this study and literature. 

Modelling 

Technique 
Country Forecasting target 

Performanc

e 
Reference 

NARX model Nigeria Average Annual Natural Gas Demand 0.98816 This Study 

NARX model Malaysia Long term Final Energy Demand per Capita 0.99 
Ayodele et 

al. 2021 

NARX model USA 
Short-Term and Medium-Term Uncertainty for 

Electrical Load and Wind Speed 
0.9964 

Jawad et al. 

2018 

NARX model Nigeria Forecasting Volatility of Nigerian Crude Price 0.986 
Gulumbe et 

al. 2016 

NARX model Algeria Forecasting Natural Gas Prices 0.8918 
Sahed et al. 

2020 

Conclusions 

The study utilized the non-linear autoregressive with external input (NARX) model to forecast the average annual 

natural gas demand in Nigeria. The NARX-1 configuration demonstrated superior accuracy with an R2 of 0.988, 

outperforming other configurations. Long-term projections indicated a consistent upward trend in natural gas 

demand, aligning with expected economic and demographic growth factors. The findings highlight the 

effectiveness of the NARX model in energy demand forecasting and its potential to inform strategic planning for 

Nigeria's natural gas sector. Overall, the research provides valuable insights for policymakers, energy planners, 

and researchers, facilitating informed decision-making and contributing to sustainable development initiatives.  
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