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Abstract 

The recent success in developing unconventional reservoirs has aroused many new challenges to the theory 

of reservoir engineering. In this paper, we try to investigate the anomalous diffusion phenomenon caused 

by the heterogeneity due to the fracture network on the reservoir scale. Firstly, we revisit the physical 

background of the single-phase flow diffusivity equation by discussing the equivalent single particle 

diffusion. Combining the characteristics of single particle diffusion with complex fracture geometry, it is 

indicated that anomalous diffusion phenomenon will be dominant on the reservoir scale, even for single 

phase production behavior. Then a model based on Markov chain is presented to demonstrate the proposed 

anomalous diffusion by simulating the particle normal diffusion on a geometric graph and then calculating 

the relation of the mean square displacement vs. time in the embedding Euclidean space. Based on the 

simulation results, in consequence, we make discussions on the characteristic size of the heterogeneity due 

to the fracture network on the reservoir scale, summarize two types of pattern for the anomalous diffusion, 

and accordingly provide a supportive argument for using the fractional diffusivity equation, in place of the 

classical one, to model the flow and production behavior in highly fractured unconventional reservoirs. 

Introduction 

In the last decade, one of the most prominent progresses for the world’s energy industry was undoubtedly 

the so-called “shale revolution”. The economic development of unconventional reservoirs, such as the shale 

gas and tight oil, was made possible by the combination of horizontal drilling and hydraulic fracturing. This 

practice has been motivating more and more interests in the academic community to investigate the nature 

of fluid flow and production characteristics in porous media with ultra-low permeability and complex 

fracture system. In turn, academic progress can shed light on the flow mechanism within unconventional 

reservoirs and improve the understanding and development of these types of plays. 

Recent successful development of unconventional reservoirs, especially shales and tight sands with 

highly complex fracture systems, yields a bunch of new challenges. Many researchers have tried to 

overcome these challenges by analyzing special phase behavior (Nojabaei et al. 2012; Luo et al. 2016; Jin 

and Firoozabadi 2016; Luo et al. 2017) and transport phenomena (Riewchotisakul and Akkutlu 2016; Wu 

and Chen 2016) in nano-size pores, and by considering geomechanics (Kim and Moridis 2012; Yu et al. 

2017) such as stress-sensitive permeability. These are all promising avenues, and some informative and 

inspiring works have been presented or published as has been referred above. On the other hand, despite 

these progresses, some fundamental concepts and tools for the unconventional reservoir engineering are 

directly inherited from conventional reservoirs as special situations with ultra-low permeability. Generally 

speaking, in the unconventional reservoir routine methodology used for modelling flow on the reservoir 

scale and analyzing production is still along the conventional route, which, for the simplest single-phase 

case, applies the diffusivity equation with some averaged or upscaled parameters. Mainly based on the 

mailto:shuailiu15@gmail.com


 

                                                                                                                                 2 

solutions to the single-phase diffusivity equations, Blasingame et al. (1986a, 1986b, 1988, 1989) rigorously 

derived the rate-decline relation and developed a method to extract the formation properties, such as 

permeability, drainage area, and hydraulic fracture length by analyzing the flowrate-time data. Due to the 

formation characteristics of unconventional reservoirs, where the traditional pressure transient analysis 

(PTA) becomes infeasible, the rate transient analysis (RTA) or production analysis, which has been 

developed from the above referred works, is the popular way to analyze the reservoir performance. Clarkson 

and Pedersen (2010) examined the use of classic RTA for analysis of tight oil reservoirs and proposed an 

integrated RTA approach, which can provide reasonable estimates of hydraulic fracture and reservoir 

properties. As a typical application of RTA in the shale reservoirs, Belyadi et al. (2015) use this tool to 

estimate the productivity of Marcellus shale wells and identify the most successful completion methods in 

the investigated play. To take into account the existence of complex fractures in the formations, the dual-

porosity model (Warren and Root 1963; Kazemi 1969; De Swaan 1978) and its variants (Abdassah and 

Ershaghi 1986; Liu et al. 1987) are widely employed in the study of unconventional reservoirs. Bello and 

Wattenbarger (2008) combined the slab matrix transient dual porosity model with RTA to study the usage 

of various shape factor formulations and the effect of matrix geometry on the transient linear response. 

Fuentes-Cruz and Valko (2015) applied the dual-porosity/dual-permeability model to study the proposed 

concept of variable matrix-block size and their resulting mathematical model is fundamentally different 

compared with the standard dual-porosity model due to the interporosity flow. Given the ultra-low 

permeability of the formation matrix and the extensively elongated transient regime, trilinear model (Lee 

and Brockenbrough 1983) has been introduced as a simplified but useful “asymptotic” model to study the 

flow in unconventional reservoirs. Ozkan et al. (2009) applied an analytical trilinear solution to describe 

the performance of the multiple fractured well and concluded that smaller fracture spacing corresponds to 

better productivity.  

Though it hasn’t aroused wide attention in the community of petroleum engineering, anomalous diffusion 

has been observed in abundant experiments (Adams and Gelhar 1992; Berkowitz and Scher 2001) and well-

studied analytically (Metzler et al. 1994; Berkowitz and Scher 1997) and numerically (Zhang et al. 2008; 

Vilaseca et al. 2011) by hydrologists, biologists, and physicists. Usually, it is the tracers or the small protein 

molecules that undertake the anomalous diffusion in a flow field that has very high heterogeneity, such as 

complex fracture systems or massive large molecular as obstacles. However, since the diffusivity equation 

describes both the tracers’ diffusion and the flow through porous media, by analogy and similarity the flow 

through porous media is very likely to show characteristics of anomalous diffusion in highly heterogeneous 

formations, for example shales. Actually, some predecessors in petroleum engineering have done some 

works on this topic. Raghavan (2011) generalized the concepts of classical diffusion by the fractional 

derivatives to explain features of anomalous diffusion. Based on fractional derivatives, he described a non-

Darcy constitutive equation for the flux. Raghavan and Chen (2017) replaced by the fractional constitutive 

flux laws the Darcy’s law in their mature dual-porosity model for the multiple fracture horizontal well to 

obtain the pressure distribution in the drainage region. They provided the asymptotic solutions for the long-

term reservoir responses and found that power-law behaviors reflect the heterogeneity in the system. 

Albinali and Ozkan (2016a) used anomalous diffusion to represent flow in the naturally fractured region 

between hydraulic fractures for the transient, single-phase production. Based on the sensitivity analyses, 

they suggested to use this model on a wide range of flow heterogeneity even without the intrinsic details of 

the formation properties. Albinali and Ozkan (2016b) discussed the basis of anomalous diffusion and 

combined this new concept with the dual-porosity model to interpret the flow in the heterogeneous 

formation. Subdiffusion exponents and other coefficients can be extracted from the anomalous diffusion 

model to help us learn more about the reservoir-rock quality and stimulation efficiency. Holy and Ozkan 

(2017) recently developed a 1-D numerical model for the linear, single-phase flow undertaking anomalous 

diffusion. This work provides the foundation for more general multi-dimensional numerical models in the 

future. 

The outline of this paper is listed as follows. In the following section, the physical background of the 

single-phase flow diffusivity equation is revisited by discussing its equivalent form describing individual 

fluid particle motion. Then, a method is developed by simulating the continuous-time Markov chain 

(CTMC) on a geometric graph to model the single-phase flow in the fracture network, which is embedded 
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in the formation. Using the simulation results we can calculate the relation of transferred mean square 

displacement (MSD) vs. time to demonstrate the proposed anomalous diffusion phenomenon. Then by the 

models described above, the simulation results for a highly fractured formation are given in the Simulated 

Result section. The plots of MSD with respect to time are displayed to show apparently the characteristics 

of anomalous diffusion with a non-unit slope. Some further discussions about the simulation results are 

provided. As a result, the fractional diffusivity equation is suggested to account for the anomalous transport 

phenomenon in the highly fractured unconventional reservoirs. 

Revisiting Diffusivity Equation 

Single-phase flow of slightly compressible fluid in porous media is always the primary and most essential 

problem for petroleum industry (Dake 1983). Although it may be called as one of the thoroughly 

investigated topics in this field, we would like to propose a new perspective for this equation when the 

porous media has a micro-structure in the form of complex fracture network. For simplicity and without 

losing generality, we will concentrate on the problem in two dimensions. 

The assumptions for the discussion and the model in this paper are listed as follows. 

1. The fluid is of single phase and slight compressibility. The formation volume factor 𝐵 and viscosity 

𝜇 can be considered essentially constant. The total compressibility of fracture rock and matrix rock 

saturated with the fluid are 𝑐𝑡𝑓  and 𝑐𝑡𝑚, respectively. In addition, only isothermal flow is considered. 

2. The formation is horizontal, and its thickness ℎ is constant. Its upper and lower boundary is of no 

flow conditions. 

3. The porous media consists of two main parts: the fractures and the matrix. The schematic graph in 

Figure 1a illustrates the domains of our model. 

• Although, in reality, the unconventional reservoir formations have the strong heterogeneity due to 

fractures in nearly all scales (Gale et al. 2014), for the purpose of this work we only take into 

account the macroscopic fractures (larger than ~10−3 ft). The fracture system consists of natural 

fracture sets, induced fractures and hydraulic fractures, all of which are interconnected to form a 

“fracture network” and capable of directly contributing to the flow into the wellbore. The natural 

fractures and induced fractures have the same formation properties: constant fracture permeability 

𝑘𝑓, constant fracture porosity 𝜙𝑓 and constant aperture  𝑏. The hydraulic fractures are assumed to 

be of planar shape and have infinite conductivity. All the fractures have the same height as the 

formation thickness and are perpendicular to the horizontal bedding plane. 

• The matrix is isotropic and homogeneous. This means that we neglect the small-scale fractures, 

and isolated fractures that have no connections to the interconnected fracture system as 

mentioned previously. The matrix has constant parameters: permeability 𝑘𝑚, porosity 𝜙𝑚. 

• Based on the nature of the unconventional reservoir that the fractures have pretty much higher 

permeability than matrix, it is assumed that the fluid initially located in fractures only transports 

in the fracture system, and that the fluid initially located in the matrix firstly transports slowly 

through the matrix into the fracture system, after which it continues transporting only in the 

fracture system. 

4. Based on the above assumptions, the flow in both domains is dictated by Darcy’s law. Due to the 

pretty small size of aperture 𝑏 compared to ℎ we can assume laminar flow in the fracture system. 

The hydraulic fractures are of uniform spacings, as shown in Figure 1b, so that each one is located in 

the center of its own drainage volume. By the geometric and physical symmetry, we regard the symmetrical 

element, a quarter of the drainage area for one hydraulic fracture, as our problem domain. As shown in 

Figure 1c, it has the length 𝑙𝑑, the width 𝑤𝑑, and the hydraulic fracture half-length 𝑥𝑓. Furthermore, the 

drainage area’s outer boundaries are of no flow conditions, except for the part of infinite-conductivity 

fracture that is at constant pressure condition. For simplicity, we also neglect the flow in fractures across 

the drainage area boundary, if any. 
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(a) 

        

              (b)      (c) 

Figure 1—Illustrations of the fracture system and matrix, the drainage area of a hydraulic fracture, and the 

problem domain. 

 

By the above assumptions, the problem has been reduced to a 2-D single phase flow problem with the 

gravity being neglected. In either the homogeneous and isotropic domains, the matrix or the fracture system, 

the pressure distribution of slightly compressible flow can be mathematically modeled by the diffusivity 

equation (Eq. 1). 

𝑘𝑖

𝜇
∆𝑝𝑖 = 𝜙𝑖𝑐𝑡𝑖

𝜕𝑝𝑖

𝜕𝑡
,…………………………………………………………………………….…...……(1) 

where 𝑖 = 𝑓,𝑚 and 𝑝𝑖 is the pressure in domain 𝑖. Since the properties are constant in each domain, Eq.1 

can be rearranged into the form as shown in Eq. 2. 

𝑘𝑖

𝜇𝜙𝑖𝑐𝑡𝑖
∆𝑝𝑖 =

𝜕𝑝𝑖

𝜕𝑡
...…………………… ……………………………..…………………….……………(2) 

As a regular step, we wrap up into a single parameter the parameters on the left-hand-side before the 

Laplace operator. In Eq. 3 the parameter 𝜂𝑖 is usually called the hydraulic diffusivity coefficient with the 

unit m2 s⁄  in SI unit. Obviously, 𝜂𝑖 is also a constant parameter in either the fracture system or the matrix. 

Substituting 𝜂𝑖 back into Eq. 1 gives us a result which has the form of the equation dictating the general 

diffusion process (Eq. 4), as shown in Eq. 5.  

𝜂𝑖 =
𝑘𝑖

𝜇𝜙𝑖𝑐𝑡𝑖
 ,……………..……………..………………………..…..…………………………………. (3) 

𝐷∆𝐶 =
𝜕𝐶

𝜕𝑡
,………………………………………………………….…………………………………..(4) 
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𝜂𝑖∆𝑝𝑖 =
𝜕𝑝𝑖

𝜕𝑡
.…………………………………………………….………………………………………(5) 

Since 𝐷 and 𝜂𝑖 have the same dimension and the above two equations share the same form, there should 

be some physical analogy between the pressure 𝑝𝑖 and the concentration 𝐶. With the assumption of slightly 

compressible fluid, the relation between the pressure and density is linear, which means that pressure is 

equivalent to density in this case. Thus, pressure can be taken as some type of “density” or “concentration” 

for the single-phase fluid particles. In this perspective, Eq.5 describes the aggregate behavior of the huge 

number of fluid particles in the porous media. 

By the theory of normal diffusion (Vlahos 2008), which has been investigated since Einstein (1905)’s 

work on Brownian motion, the MSD, 〈𝑟2〉, of the fluid particles is related to the time 𝑡 by the diffusivity 

coefficient 𝐷, as shown in Eq. 6. Eq. 5 can be derived from Eq. 6 (Vlahos 2008), which means Eq. 5 is only 

valid for the aggregate behavior of those particles whose MSD vs. 𝑡 relationship is dictated by Eq. 6. That 

is, the validity for using Eq. 5 for a flow on the domain with a specified scale depends on the validity of Eq. 

6 for the fluid particles in the same domain. 
 

〈𝑟2〉 ~ 𝑡.………………………………………………………………………………….……………..(6) 

According to the above analysis, the reason why Eq. 5 can be successfully applied to the conventional 

reservoir’s flow in multiple scales is that the fluid particles moves approximately in a Euclidean space due 

to the relatively homogeneous porous media, and that the average motion of the particles is dictated by 

Eq.6. And for the same reason, Eq. 5 is also valid for the flow in some tight sands with very low permeability 

but no well-developed fracture networks, except for a quite small 𝜂𝑖. 

However, this isn’t the case for the unconventional reservoirs with complex fracture systems. By the 

assumptions, all the produced fluid comes directly from the fracture system. And the high production rate 

during the early period (several months to years) after the beginning of production all comes from the fluid 

initially located in the fracture system because of the ultra-low matrix permeability. Thus, the major fluid 

flow and the production in this period can be readily modeled by solving Eq. 5 with the fracture parameters 

on the fracture domain, only if the span, shape, and other details of the fracture network are available, which 

is basically impossible by the current state-of-the-art technology. Consequently, we are forced to model the 

fracture flow based on the combined domains, since we have much more information and confidence to 

determine the drainage area. 

Using the perspective of diffusing fluid particles, it is obvious that the particles only move in the fracture 

network instead of the full Euclidean space. Therefore, although the particle motion is described by Eq.6 

using the 1-D coordinate attached to the fracture, this relation of MSD vs. 𝑡 needs to be transferred to the 

2-D coordinate attached to the whole drainage area. This is illustrated in Figure 2. In this figure, a particle 

diffuses from point 1 to point 2 along the yellow path in the fracture. Its displacement with respect to the 

fracture coordinate is 𝑟1 + 𝑟2 + 𝑟3 + 𝑟4, while that with respect to drainage area coordinate is 𝑑, which is 

much smaller than the previous one. Apparently, this transferring should take into account the geometric 

characteristics of the fracture network, which means the transferred relation of MSD vs. 𝑡 will not follow 

the linear relation as Eq.6. According to some prior works (Berkowitz and Scher 2001; Vlahos 2008), it 

can be intuitively proposed that the modified relation should have the power law form as shown in Eq.7. 

〈𝑟2〉 ~ 𝑡𝛼.………………………………………………………..…………………..…………………(7) 

If 𝛼, the diffusivity exponent, doesn’t keep unit, the corresponding process is named as the anomalous 

diffusion. To demonstrate this phenomenon in highly fractured formation is the main task of the rest of this 

paper. As a consequence, due to the possible invalidity of Eq.6 when 𝛼 isn’t the unit anymore, using Eq.5 

to model the flow and production based on the whole drainage area may be only a very rough simplification 

and fails to capture some features of the flow through the unconventional reservoir with complex fracture 

networks. 
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Model Based on Markov Chain 

To simulate the fluid particle’s motion in the fracture network, which is embedded in a 2-D Euclidean space, 

we take advantage of its normal diffusion. As has been studied in many publications (Itô 1974; Rogers and 

Willianms 1994), the fluid particles under normal diffusion can be mathematically modeled to have Markov 

property. In more details, denoting the location of a single particle at time 𝑡 as 𝑋(𝑡), we have a continuous-

time stochastic process {𝑋(𝑡): 𝑡 ≥ 0}, which is considered to have Markov property only if the conditional 

probability satisfies Eq.8 (Itô 1974; Rogers and Willianms 1994). 

𝑃[𝑋(𝑡) = 𝑗|𝑋(𝑠) = 𝑖, 𝑋(𝑡𝑛−1) = 𝑖𝑛−1, 𝑋(𝑡𝑛−2) = 𝑖𝑛−2, ⋯ , 𝑋(𝑡1) = 𝑖1 ] = 𝑃[𝑋(𝑡) = 𝑗|𝑋(𝑠) = 𝑖],.....(8) 

where 0 ≤ 𝑡1 ≤ 𝑡2 ≤ ⋯ ≤ 𝑡𝑛−2 ≤ 𝑡𝑛−1 ≤ 𝑠 ≤ 𝑡  is any non-decreasing sequence of n+1 times and 

𝑖1, 𝑖2, ⋯ , 𝑖𝑛−2, 𝑖𝑛−1, 𝑖, 𝑗 are any n+1 states in the state space of Markov chain. It means that each step of 

stochastic “jump” only depends on the current states, and the particle acts as it “forgets” the states it has 

previously experienced. 

Since in this work the particles only move in the fracture network, the state space of the Markov chain 

only contains the points belonging to the fractures. For simplicity and the limitedness of our computational 

resources, we only take the endpoints and the intersection points of the fracture segments as the states, as 

illustrated in Figure 3. When a particle occupies a state at a given time, it will “jump” after some “waiting 

time” at the next step to one of the neighbor states. 

The target of the “jumping” is chosen randomly according to the probability distribution determined by the 

diffusivity coefficient, the length, and the aperture of all the fracture segments directly connected to the 

current state, as shown in Eq.9. 

 

 

Figure 2—Illustration of the displacements with respect to different coordinates. 

 

Figure 3—Illustration of endpoints and intersection points as states. 
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𝑃[𝑋(𝑡) = 𝑗|𝑋(𝑠) = 𝑖 ] = {

𝜂𝑗𝑏𝑗 𝑙𝑗⁄

∑ 𝜂𝑘𝑏𝑘 𝑙𝑘⁄𝑘∈𝑁𝑖

,     𝑗 ≠ 𝑖

           0,               𝑗 = 𝑖  
,……………………………………………………..(9) 

where 𝑃[𝑋(𝑡) = 𝑗|𝑋(𝑠) = 𝑖 ] is the probability for jumping from the current state 𝑖 to the neighbor state 

 𝑗, 𝑁𝑖 is the set of neighbor states of 𝑖, and 𝜂𝑘, 𝑏𝑘 and 𝑙𝑘 are respectively the diffusivity coefficient, aperture 

and length of the fracture segment connecting 𝑖  and one of its neighbor state 𝑘 . Only if this kind of 

probability distribution is applied will the resulting expectation of the stochastic process hold consistency 

with the solution of the diffusivity equation. 

However, the above probability distribution only applies to the states corresponding to regular points, 

not to those points located on the hydraulic fracture. As stated in the assumptions, the hydraulic fracture 

has infinite conductivity, which is translated into total absorbing states for the particle stochastic motion. It 

means that whenever a particle jumps into these states, it will stay there forever and will not jump to other 

states again. Apparently, the probability distribution of these absorbing states is 

𝑃[𝑋(𝑡) = 𝑗|𝑋(𝑠) = 𝑖 ] = {
0,          𝑗 ≠ 𝑖
  1,          𝑗 = 𝑖 

……………………..………………………..…………….(10) 

This definition of absorbing state is consistent with the constant pressure condition on the hydraulic 

fracture boundary. No matter what type the state is, its probability distribution satisfies the normalization 

condition that 

∑ 𝑃[𝑋(𝑡) = 𝑗|𝑋(𝑠) = 𝑖 ]𝑗∈𝑁𝑖
= 1....………………………………………………..…..…………….(11) 

Both definitions in Eqs.9 and 10 use only the information of current state 𝑖, which manifests this process 

as a Markov chain. Besides the spatial increment, the temporal increment (the “waiting time”) should also 

keep the Markov property, which means that only the “memoryless” Poisson distribution should be applied 

to the temporal increment. While the Markov property of time will later be considered implicitly by the 

Kolmogorov forward equation, we state the temporal increment’s Poisson distribution here for 

completeness. 

By the above concepts, we have implicitly described the fracture network as a graph object, which has 

the endpoints and the intersection points of the fracture segments as the nodes and the fracture segments 

between these nodes as edges. This graph is certainly related to the corresponding fracture network, so the 

graph is classified to be a geometric graph with Euclidean coordinates as one of the node attributes and 

length as one of the edge attributes. Besides, another critical attribute for each edge is the weight, which 

defines the transition rate of the CTMC and is related to the probability distribution previously discussed. 

The edge weight is naturally defined as 𝜂𝑏 𝑙⁄ . Briefly speaking, introducing the graph definition and 

terminologies explicitly will make our simulation easier to be implemented by programming. 

So far, we have reduced our problem to a feasible task that a CTMC is to be simulated on a geometric 

graph object, whose set of nodes are taken as the finite state space, and the weight, 𝜂𝑏 𝑙⁄ , of the edge 

between node 𝑖 and 𝑗 as the major part of transition rate 𝑞𝑖𝑗. By the Kolmogorov forward equation (Itô 

1974), for the node 𝑖, we have 

𝑑𝑃𝑖𝑗(𝑡)

𝑑𝑡
= ∑ 𝑃𝑖𝑘(𝑡)𝑞𝑘𝑗𝑘∈𝑆 ...………………………………….…………………..…………….………(12) 

In Eq.12, 𝑃𝑖𝑗(𝑡) = 𝑃[𝑋(𝑡) = 𝑗|𝑋(0) = 𝑖] is the probability for the particle occurring at node 𝑗 at time 𝑡 

after it starts moving from the initial node 𝑖. 𝑞𝑘𝑗 as the transition rate between node 𝑘 and node 𝑗 has the 

definition as shown in Eq.13. 

𝑞𝑘𝑗 = {

𝜂𝑗𝑏𝑗 (𝑙𝑗𝑎
2)⁄ ,                               𝑘 ≠ 𝑗 𝑎𝑛𝑑 𝑗 ∈ 𝑁𝑘

−∑ 𝜂𝑗𝑏𝑗 (𝑙𝑗𝑎
2)⁄𝑗∈𝑁𝑘

,               𝑘 = 𝑗                      

  0,                                    𝑜𝑡ℎ𝑒𝑟𝑠       

,……………………………………………(13) 
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where 𝑎 is only a characteristic length for the system to make the unit consistent. And 𝑆 is the set of all the 

nodes in the graph. Writing the ordinary differential equation (ODE) Eq.12 into the matrix form, we have 

𝑑�⃑� (𝑡)

𝑑𝑡
= �⃑� (𝑡)𝐐,………………………………………………………………..……………………….(14) 

where �⃑� (𝑡) is a stochastic vector, and 𝐐 = {𝑞𝑖𝑗} is the transition rate matrix. From graph theory, we know 

(Wikipedia 2017) that for a well-defined weighted graph, each entry of 𝐐  is the opposite of the 

corresponding entry in the graph’s Laplacian matrix, which can be readily obtained. With the help of matrix 

exponential, the solution of Eq.14 can be symbolically expressed as 

�⃑� (𝑡) = �⃑� (0) exp(𝐐𝑡),………………………………………………………………………………..(15) 

where �⃑� (0) is the particle’s initial distribution among the nodes. 

If we temporarily assume that the matrix exponential in Eq.15 can be successfully evaluated, we can 

obtain the probabilities for a particle occurring at each node at any time 𝑡 after it starts to move from node 

𝑖. The initial stochastic vector for this case is given by Eq.16.  

�⃑� (0) = [0, 0,⋯ , 0, 1, 0,⋯ , 0] ,………………………………………………….……..………………(16) 

where 1 is the 𝑖th entry of this vector. These probabilities are equivalent to the particle distribution at time 

𝑡 when massive particles all start from 𝑖 to undertake the stochastic process. On the other hand, since it is 

a geometric graph with Euclidean coordinates as node attributes, we can calculate the square of distance 

between node 𝑖 and all other nodes to obtain a “vector of distance square”, 𝑣 𝑑𝑠, as shown in Eq.17. 

𝑣 𝑑𝑠 = [𝑑1,𝑖
2 , 𝑑2,𝑖

2 , ⋯ , 𝑑𝑖−1,𝑖
2 , 0, 𝑑𝑖+1,𝑖

2 , ⋯ , 𝑑𝑛,𝑖
2 ] ,………………………………………………………….(17) 

where 𝑑𝑗,𝑖  is the Euclidean distant between node 𝑖 and 𝑗, 𝑑𝑗,𝑖 = [(𝑥𝑖 − 𝑥𝑗)
2
+ (𝑦𝑖 − 𝑦𝑗)

2
]
1 2⁄

. Recalling 

that our main task is to calculate the relation of transferred MSD vs. 𝑡 for the formation embedding fracture 

network (or the Euclidean space embedding geometric graph), this task can be done by taking the dot 

product between �⃑� (𝑡) and 𝑣 𝑑𝑠 as shown in Eq.18. 

〈𝑟2〉(𝑡) = �⃑� (𝑡) ∙ 𝑣 𝑑𝑠..……………………..…………………………………………….……………(18) 

Theoretically, we have provided the solution to our problem, but in practice the stable evaluation of the 

matrix exponential is problematic. Since usually the longest fractures (~102 ft) are several orders of 

magnitude longer than the shortest ones (~10-3 ft), the value range of the non-zero entries in the matrix 𝐐 is 

quite large, which makes 𝐐 a very stiff matrix. Some common methods (Padé approximation, Krylov space 

methods (Moler and Van Loan 2003)) and packages (expokit (Sidje 1998), MatrixExp in Mathematica 

(Wolfram Research, Inc. 2017)) for evaluating matrix exponential do not work very well for the cases 

encountered in this paper. So, we had to resort to numerical methods solving the ODE Eq.14 directly 

(Basically any “stiff” ODE solver can be used). We have used Mathematica’s NDSolve function (Wolfram 

Research, Inc. 2017), which integrates many “stiff” ODE solvers into its options, to solve Eq.14 numerically 

for getting �⃑� (𝑡). 

Besides the last step of solving ODE, some other packages and algorithms have been used to do some 

pre-processing work. The 2-D discrete fracture network (DFN) is created using the FRACGEN; The DFN 

is processed by a modified python package (Splichte 2013) based on the Bentley-Ottmann algorithm; The 

graph object is readily created using a python package, networkx (Hagberg et al. 2008). 

Simulation Results 

Using the described model in the last section, we conduct the simulation to the flow in the fracture networks 

with different scenarios (Table 1):  

Case 0: uses the regular meshes with uniform grid size in both 𝑥 and 𝑦 axis;  

Case 1: uses the fracture network with two orthogonal sets which are randomly generated by FRACGEN;  

Case 2: also uses the fracture network with two orthogonal sets, but the overall network rotates 45°;  
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Case 3: uses the fracture network with two sets having 40° between them, and all the upper domain; 

Case 4: uses a very complex fracture network, which has 4 sets of fractures  and is the sample, “MWX4f”, 

in FRACGEN.  

 

Table 1—Statistics for the fracture network in various Cases. 

Case Name Max (ft) Min (ft) Mean (ft) Median (ft) Number of fractures Number of nodes 

Case 0 10 10 10 10 2525 1285 

Case 1 92.4 1.70E-03 11 7.6 1969 1753 

Case 2 83.8 1.00E-03 10.5 7.5 1940 1690 

Case 3 123.7 1.00E-03 13.1 8.5 753 698 

Case 4 81.6 1.00E-03 10 5.9 2572 2214 

 

The domain of the first 4 cases all have the dimensions of 500 ft ×250 ft coming from the well spacing 

1000 ft and fracture spacing 500 ft. And all cases have a hydraulic fracture half-length of 400 ft (𝐼𝑥 = 0.8) 

which is represented by the blue line on the boundary. Since each case contains hundreds and even 

thousands of nodes, the comprehensive investigation is impossible without the help of some statistical 

methods, which is out of the scope of this paper. So, we only select 10 nodes randomly in each case to do 

the simulation on them and to show the relation of MSD versus 𝑡. The plots and parameters of the fracture 

networks, and the results are shown below. 
 

Case 0. 

 

 

Figure 4—Map view plot of the fracture network and 10 sampled nodes in Case 0. 
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Figure 5—log-log plots of MSD vs. time for 10 sampled nodes in Case 0. 

Case 1. 

 

 

Figure 6—Map view plot of the fracture network and 10 sampled nodes in Case 1. 

 

 

 

Figure 7—Histogram of the fracture length in Case 1. 
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Figure 8—log-log plots of MSD vs. time for 10 sampled nodes in Case 1. 

 
Case 2. 

 

Figure 9—Map view plot of the fracture network and 10 sampled nodes in Case 2. 

 

 

 

Figure 10—Histogram of the fracture length in Case 2. 
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Figure 11—log-log plots of MSD vs. time for 10 sampled nodes in Case 2. 

 

Case 3. 

 

 

Figure 12—Map view plot of the fracture network and 10 sampled nodes in Case 3. 

 

 

Figure 13—Histogram of the fracture length in Case 3. 
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Figure 14—log-log plots of MSD vs. time for 10 sampled nodes in Case 3. 

Case 4. 

 

 

Figure 15—Map view plot of the fracture network and 10 sampled nodes in Case 4. 

 

 

 

Figure 16—Histogram of the fracture length in Case 4. 
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Figure 17—log-log plots of MSD vs. time for 10 sampled nodes in Case 4. 

 

Discussions of the Results 

When performing the above 5 case studies, for simplicity we assign unit value to the diffusivity coefficient 

𝜂𝑗, the aperture 𝑏𝑗, the fracture height ℎ, and the characteristic length 𝑎 and only use 1 𝑙𝑗⁄  as the weight of 

the edges to construct the weighted graph’s Laplacian matrix. Since by our assumptions 𝜂𝑗, 𝑏𝑗, ℎ and 𝑎 are 

all constants, only a constant factor is needed to transfer the “time” 𝑡 in the above plots to the real time, and 

the phenomena displayed aren’t affected by the values of these parameters as far as they fall into the ranges 

guaranteeing the basic assumptions of this work. 

In each of the above plots, besides the resulting relations of MSD vs. 𝑡 presented in log-log plot, some 

dash lines with different colors are added to accommodate our analysis. Firstly, the most straight-forward 

one is the orange dash line, which has exactly the unit slope. Because Case 0 uses the regular grid to do the 

simulation, it is exactly the same thing as conducting numerical simulation to the homogeneous reservoirs 

with the most common spatial discretization. Thus, Case 0’s result should be expected to show the nature 

of normal diffusion, as we have discussed in the previous section. It is exactly what we see in Case 0’s plots 

(Figure 5). The unit-slope orange line tracks firmly the resulting curve until deviation happens at the late 

time, when most of the particles have been “locked” in the absorbing nodes and MSD levels out.  Some 

very small deviations occur at the early or intermediate time of some nodes, Node 155, Node1074, and 

Node 1126. This is due to the boundary effect of our finite graph on these nodes that are relatively close to 

the boundaries. Then, using Case 0 as a reference, we can immediately notice the discrepancies between 

other cases (Figure 8, Figure 11, Figure 14, and Figure 17) and the normal diffusion. Although it seems 

that every node in from Case 1 to Case 4 has its unique relation due the various local characteristics of the 

random created DFN, an obvious common phenomenon is that most of the curves deviate from the unit-

slope orange in quite early time. Many of them are concave downwards displaying subdiffusion, with some 

of them being concave upwards corresponding to superdiffusion. 

The pair of green dash lines in each plot give us some sense of the scale of heterogeneity. Roughly 

speaking, the average fracture length in all 5 cases is about 10 ft, which corresponds to 100 ft2 for distance 

square. So, the green line pair shows the point where the MSD reaches a value that can be taken as 

characteristic size of heterogeneity. In Case 0 where the fracture segments are all 10 ft long, the slope keeps 

the unit value before and after 100 ft2 MSD is reached due to the totally homogeneous fracture distribution. 

In other cases, most deviations happen within the range 10 ft2~1000 ft2MSD, or 1 ft ~ 10 ft, again roughly 

speaking. Moreover, we can see that each plot has the exact unit-slope section in the very early time when 

MSD is very small. Recall that only fractures longer than 10-3 ft are modeled in our work, and the number 

of fractures with length less than 10-1 ft is very small from all the four histograms. This means that the flow 

domain with its characteristic dimensions less than the average fracture length can be considered 

homogeneous to some extent. However, since only 10 nodes have been sampled out of thousands for each 

case, this point can only be taken as a reasonable suggestion. It should also be noted that this observation 

has been made while neglecting all other types of heterogeneity. 
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Although currently we cannot connect the fracture network characteristics (fracture density, fracture 

length distribution, fracture sets and clusters, and so on) to the properties of the diffusion due to the limited 

number of sampled nodes, we are capable to summarize some common diffusion patterns when looking at 

the results from various DFNs comprehensively. We have already noted the early time concave period. 

Similarly, the absorbing boundary domination at the late time is quite apparent. From the homogeneous 

Case 0, it is apparent that the absorbing boundary has the effect of greatly leveling out the curve. Bearing 

this in mind, we roughly draw the red straight dash line by hand to try to catch up its average deviating 

trends in early or intermediate times, and to try to rule out the absorbing boundary effects. So, these 

handmade trendlines are to some extent secant lines of the resulting curves. Consequently, the slope of 

these trendlines, which is exactly the diffusivity exponent 𝛼  in Eq. (7), tells the types of anomalous 

diffusion in a given range of scale: subdiffusion for 𝛼 < 1  and superdiffusion for 𝛼 > 1 . Generally 

speaking, there are two diffusion patterns for the flow in the fracture network, if the anomalous diffusion 

does happen. Type 1 is that after the early normal diffusion section, the curve directly concaves downward, 

and the flow begins to undertake subdiffusion until the absorbing boundary dominates. The typical 

examples for this type are Node 964, 1104 in Case 1 (Figure 8), Node 139, 428, 731, 965, 1650 in Case 2 

(Figure 11), Node 10, 471 in Case 3 (Figure 14), and Node 1137, 1714, 2128 in Case4 (Figure 17). Type 2 

is characterized with a hump-like shape, which means the curve concaves upward to undertake 

superdiffusion firstly, and then becomes subdiffusion in a larger MSD range. The typical examples for this 

type are Node 150, 357, 801 in Case 1 (Figure 8), Node 1031 in Case 2 (Figure 11), Node 7, 377 in Case 3 

(Figure 14), and Node 340, 1958, 2182 in Case 4 (Figure 17). Only if the absorbing boundary begins to 

dominate, the undertaking diffusion is overwhelmingly affected and even totally hidden. These two patterns 

are kind of intuitive for a flow into hydraulic fractures (the absorbing nodes). We feel that more complex 

patterns can be expected in some highly heterogeneous formations, possibly alternating subdiffusion and 

superdiffusion time periods. 

Based on our prior discussions, we now try to answer our major question: Is it valid enough to apply the 

classical diffusivity equation on the reservoir scale to model single-phase flow and to analyze the 

production? In our opinion, the diffusion pattern classification provides a perspective for the answer. 

Looking back again at Case 0, we make a tangential line (the horizontal black dash line) from the final 

plateau of the curve, and the tangential point and the intersection point with the unite-slope trendline both 

correspond to a time (the vertical black dash lines). Not so surprisingly, we find that in the normal diffusion 

case, the differences between these two times for different nodes are always around 1 log cycle. So, this 

can serve as a standard to tell the validity of the averaged model (or homogenization) with the classical 

diffusivity equation. The type 1 pattern, when only subdiffusion happens, obviously enlarges this time 

difference to around  1  1
2⁄  or even 2 log cycles, and hence disproves the validity. On the other hand, the 

superdiffusion and subdiffusion in type 2 pattern counteract with each other to some extent and can lead to 

the time difference around 1 log cycle, such as Node 150 in Case 1 (Figure 8), Node 7, Node 377 in Case 

3 (Figure 14), and Node 340 in Case 4 (Figure 17). So, if both type of nodes exist in a situation, we should 

determine or estimate which type dominates. It would require massive simulation conducted, or some 

advanced statistical tool employed. However, type 2 pattern can also lead to confusion by substantially 

shortening the time difference, which displays a superdiffusion on average, like the Node 357, 542, 801 in 

Case 1 (Figure 8), Node 1031 in Case 2 (Figure 11), Node 2181 in Case 4 (Figure 17). Actually, depending 

on the relation between superdiffusion, subdiffusion and absorbing boundary effects, type 2 pattern can 

manifest itself as “apparent” superdiffusion, subdiffusion or normal diffusion on average. The above 

observations provide further supportive argument for using the fractional diffusivity equation for modeling 

flow in porous media and production behavior in highly fractured unconventional reservoirs. 

In the end, we can also make some discussions about the common dual-porosity model in the perspective 

of anomalous diffusions. Although the dual-porosity model also bears the two flow domain assumptions 

(fracture and matrix), it implicitly makes further assumption that the flow particles in the fracture domain 

undertake the diffusion in a Euclidean space. Thus, although it considers matrix supplementing fluid into 

fracture correctly, it still fails to capture the heterogeneity due to the geometry of the fracture network, 

which may limit the model’s application in highly fractured unconventional reservoirs. 
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Conclusions 

In summary, based on our simulation work and the relevant discussions, we can reach the following 

conclusions: 

1. The physical background of the single-phase diffusivity equation is revisited. Combining the 

characteristics of single particle diffusion with complex fracture geometry, it is indicated that 

anomalous diffusion phenomenon will be dominant on the reservoir scale, even for single phase 

production behavior; 

2. A Markov-chain-based model is presented to model single particle diffusion and it is demonstrated that 

anomalous diffusion characteristics emerge from considering normal diffusion on a graph that is 

embedded in a 2-D Euclidean space; 

3. According to the simulation results, two known types of diffusion pattern (subdiffusion and 

superdiffusion) may rise from the same graph geometry (possibly alternating in time); 

4. The fractional diffusivity equation have advantages in characterizing flow and production in highly 

fractured unconventional reservoirs. 
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Nomenclature 

𝛼 =  diffusivity exponent 

𝜂 =  hydraulic diffusivity coefficient, ft2/sec 

𝜇 =  viscosity, cp 

𝜙 =  porosity 

𝑎 =  characteristic length, ft 

𝐵 =  formation volume factor, RB/STB 

𝑏 =  fracture aperture, ft 

𝐶 =  concentration, mol/ft3 

𝑐𝑡 =  total compressibility, psi-1 

𝐷 =  diffusivity coefficient, m2/s 

𝑑 =  euclidean distance between to nodes in the geometric graph, ft 

ℎ =  formation thickness, ft 

𝑘 =  permeability, mD 

𝑙 =  fracture length, ft 

𝑙𝑑 =  length of the problem domain, ft 

𝑁𝑖 =  the set of the neighbor states of state 𝑖 
𝑃 =  probability 

𝑝 =  pressure, psi 

𝐐 =  transition rate matrix 

𝑞 =  transition rate, 1/sec 

𝑟 =  partical displacement, ft 

𝑆 =  the set of all the nodes in a graph 

𝑡 =  time, sec 

𝑣 𝑑𝑠 =  vector of distant square, ft2 

𝑤𝑑 =  width of the problem domain, ft 

𝑋 =  location/state of a particle 

 

Subscripts 

𝑓 =  fracture domain 

𝑚 =  matrix domain 
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