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Despite ovarian cancer (OC) represents the leading cause of death in gynecology, however, current 

understanding of the molecular machinery governing initiation, development and recurrence of the tumor is still 

limited. Particularly, lack of specific biomarkers defining the complex states of OC limits effective diagnosis and 

prognosis and, subsequently, hinders appropriate therapy strategies for OC patients. MicroRNA (miR) are small 

non-coding, regulatory RNA molecules which have critical functions in tumor biology, and which have been 

functionally grouped into tumor suppressive and tumor promoting miR. miR-1 has been described operating as 

a tumor suppressor which attenuates proliferation and progression in divers solid cancer entities. Currently, 

there are no data available concerning miR-1 functionality in progression of OC, particularly, in regard to its 

potential as a biomarker for OC diagnosis and treatment. Therefore, the present study examined miR-1 

expression levels in established OC cell lines as well as in tissue samples from primary and relapsed OC patients 

to get a first understanding of putative miR-1 properties in OC progression. Notably, we found miR-1 in OC cell 

lines was linked to higher cell growth rates. Moreover, analysis of patient samples revealed miR-1 levels in 

relapsed tumors appeared being up-regulated compared to primary tumors. The findings of our preliminary 

study (1) may suggest a novel role of miR-1 in OC as a promotor of cancer progression or (2) exhibit a 

dysregulation of miR-1 functions by a so far unknown disruption of miR-1 regulatory cascades. 
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Introduction 

Ovarian cancer (OC) is the leading cause of death among 

all gynecological malignancies 
[1]

. The advanced stage at the

time of diagnosis is defined by a lack of specific symptoms 

and explained by the absence of appropriate screening tests. 

Despite achievements in both surgical treatment and the 

development of new drugs the 5-year survival rate remains 

very low 
[2]

. For these reasons, there is an urgent need to find

new predictive and prognostic factors for OC diagnosis and 

prognosis as well as new targets for novel treatment options. 

Even though OC represents the most lethal cancer in 

gynecological oncology, unfortunately, very little is known 

about the molecular machinery governing tumor 

development and progression. MicroRNA (miR) are small 
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non-coding RNA molecules that play a pivotal role in control 

of gene expression at the post-transcriptional level 
[3]

. The 

molecular mode of action is characterized by the specific 

binding to mRNA followed by (1) an increased degradation 

of the target mRNA or (2) an enhanced repression of 

translation 
[4]

. Current studies have identified dysregulated 

miR expression pattern in various malignancies and, thus, 

pointed to miR being exceedingly involved in tumor 

initiation and progression 
[5, 6]

. Numerous miR have been 

shown to display tumor suppressor properties while others 

harbor oncogenic activities (oncomirs) 
[7]

. Up to now, 

approximately 40 miR species have been identified and 

partially characterized with regard to their characteristics in 

OC progression; to our best knowledge, nothing is known 

about miR-1 functionality in OC. Formerly, miR-1 was 

specified to be specific for skeletal and heart muscle cells 

with nearly undetectable levels in other tissues 
[8]

. However, 

recent studies showed miR-1 linked to central mechanisms in 

tumor biology, e.g. suppression of tumor growth, 

epithelial-mesenchymal transition, and cell motility 
[9–11]

, and 

from these properties it follows that miR-1 belongs to the 

miR group of tumor suppressors. 

Therefore, the present work investigated for the first time 

expression levels of miR-1 in OC to get a first understanding 

of putative miR-1 properties in OC cells. Particularly, this 

preliminary study focused on miR-1 expression rates in five 

established OC cell lines and 21 tumor tissue samples to 

obtain first hints on the regulatory role of miR-1 in OC 

progression. 

Materials and Methods 

Cell Culture 

The human OC cell lines OVCAR-3 and SKOV-3 - both 

received from Cell Lines Service (Eppelheim, Germany) - 

were propagated in RPMI 1640 medium (Biochrom, Berlin, 

Germany) containing 10% fetal calf serum (Biochrom), 

0.125% gentamicin (Ratiopharm, Ulm, Germany) and 0.1% 

insulin (Novo Nordisk, Mainz, Germany), and DMEM/F12 

(Life Technologies, Darmstadt, Germany) supplemented 

with 5% fetal calf serum and 0.125% gentamicin, 

respectively. The OC cell lines UWB1.289, TOV-112D, and 

TOV-21G - all purchased from the American Type Culture 

Collection (Manassas, VA, USA) - were propagated in RPMI 

(Biochrom)/MEGM (Lonza, Basel, Switzerland) 1:1 media 

mixture containing 3% fetal calf serum and 0.065% 

gentamicin (UWB 1.289) and MCDB105 (tebu-Bio, 

Offenbach, Germany)/Medium 199 (Biochrom) mixture 

containing 15% fetal calf serum and 0.125% gentamicin 

(TOV-112D, TOV-21G). Cells were passaged twice per 

week in a humidified atmosphere at 37°C and 5% CO2. 

Proliferation Assay 

Cellular growth of OC cells was examined by cell 

counting utilizing a CASY Cell Counter and Analyzer Model 

TT (Roche Applied Science, Mannheim, Germany). 

Therefore, adherent cells were detached by trypsin treatment, 

suspended in CASYton (Roche Applied Science) as 1:100 

dilution and 400 µl of cell suspension were analysed with 3 

replicates. Measurement was performed using a capillary of 

150 µm in diameter and cell line specific gate settings to 

discriminate between living , dead cells, and cellular debris: 

9.00 µm/15.75 µm (OVCAR-3), 7.00 µm/15.15 µm 

(SKOV-3), 7.15 µm/15.65 µm (UWB1.289), 5.25 µm/10.15 

µm (TOV-21G), and 6.15 µm/11.00 µm (TOV-112D). 

Patients Samples 

This study was approved by the Ethics Committee of the 

University Medicine Greifswald (registration no. III SV 

05/04) and all patients signed informed consent forms. All 

samples and related clinical data were obtained from the 

Department of Gynecology and Obstetrics, Universitiy 

Medicine Greifswald. The control group consisted of women 

with no history of malignancy. In order to obtain detailed and 

complete data about the histo-pathological features of the 

tumores and the surgical treatment, the IMO (intraoperative 

mapping of ovarian cancer) documentation system was used 
[12]

. 

RNA Preparation and cDNA Synthesis 

For detection of miR-1 expression in OC cell lines 

OVCAR-3, SKOV-3, UWB1.289, TOV-112D, and 

TOV-21G, cells were grown in a 6-well cell culture plate to 

80% confluency, and total RNA was prepared using 

peqGOLD Trifast Reagent (Peqlab Biotechnology, Erlangen, 

Germany) according to the manufacturer's instructions. For 

total RNA isolation from OC tumor tissue 50 - 150 g tissue 

were applied to the NucleoSpin RNA/Protein Kit 

(Macherey-Nagel, Düren, Germany) according to the 

supplier’s instructions. Subsequently, RNA concentration 

was determined utilizing a Nanodrop 2000c UV/vis 

spectrophotometer (Peqlab Biotechnology) and RNA was 

stored at -80°C. 

For reverse transcription 100 ng of total RNA were used 

with the Superscript II Reverse Transcriptase (Life 

Technologies) according to the protocol of Chen et al. 
[13]

. 

Stem-loop primers for reverse transcription were designed as 

follows: miR-1 stem-loop: 5'-GTCGTATCCAGTGCAGGG 

TCCGAGGTATTCGCACTGGATACGACATACAT-3'; U6 

stem-loop: 5'-GTCATCCTTGCGCAGG-3'. 
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Table 1. Patient characteristics, pathology results, and miR-1 levels 

patient  Rel. miR-1 expression 

No. age FIGO pathology  primary relapse 

1 53 IV serous papillary  0.29 ± 0.10 - 
2 61 IIIc serous papillary  7.48 ± 3.47 - 

3 65 IIIc serous papillary  0.78 ± 0.94 - 

4 71 IIIc endometroid  0.15 ± 0.06 - 
5 72 IV serous papillary  0.24 ± 0.01 - 

6 76 IIIc serous papillary  0.06 ± 0.05 - 

7 70 IIIc serous papillary  0.37 ± 0.31 - 
8 65 IIIb serous papillary  0.34 ± 0.32 - 

9 58 IIIc serous papillary  0.18 ± 0.01 0.29 ± 0.06 
10 55 IV serous papillary  0.11 ± 0.00 0.36 ± 0.16 

11 48 IIIc serous papillary  0.05 ± 0.02 2.81 ± 0.44 

12 35 IIIc serous papillary  0.03 ± 0.01 0.17 ± 0.03 
13 45 III serous papillary  - 0.03 ± 0.03 

14 72 IV serous papillary  - 1.29 ± 0.03 

15 76 IIIc serous papillary  - 0.98 ± 0.00 
16 70 III serous papillary  - 1.07 ± 1.13 

17 65 IIIc serous papillary  - 0.17 ± 0.15 

 

Quantification of miR-1 by Polymerase Chain Reaction 

Quantification of miR-1 was performed with the SensiMix 

SYBR hi-ROX Kit (Bioline, Luckenwalde, Germany) on a 

CFX96 Real-Time System (Bio-Rad, München, Germany) 

with the CFX Manager software (Bio-Rad). The sequences 

of the PCR primers were as follows: miR-1 forward: 

5'-GCCCGCTGGAATGTAAAGAAGTATG-3'; miR-1 

reverse: 5'-GTGCAGGGTCCGAGGT-3'; U6 forward: 

5'-CGCTTCGGCAGCACATATAC-3'; U6 reverse: 

5'-AGGGGCCATGCTAATCTTCT-3'. The cycling 

parameters were one denaturation cycle at 95°C for 5 min 

and 45 amplification cycles at 95°C for 10 sec, 60°C for 20 

sec, and 72°C for 10 sec, followed by a melt curve analysis. 

For quantification, miR-1 signals were standardized to U6 

RNA as reference. 

Statistics 

Data were evaluated using the graphics and statistics 

software program Graph Pad Prism (version 5.01) and 

expressed in column or box plot presentations. Statistical 

comparisons were performed using the unpaired Student’s t 

test with results of p ≤ 0.05 were given as significant. 

Results 

Highly variable miR-1 expression rates in OC cell lines 

In this study we aimed at analysing expression levels of 

miR-1 in OC cell lines as well as in OC tissue samples. To 

proof whether miR-1 is expressed in cells from OC origin, 

we tempted to compare intracellular miR-1 concentrations in 

the established OC cell lines SKOV-3, OVCAR-3, 

UWB1.289, TOV-21G, and TOV-112D. Basal miR-1 signals 

were detectable in all of these cell lines with relative 

concentrations of 0.03 ± 0.05 (SKOV-3), 0.08 ± 0.04 

(OVCAR-3), 0.24 ± 0.41 (UWB1.289), 0.39 ± 0.48 

(TOV-21G:), and 1.10 ± 0.32 (TOV-112D; Fig. 1). 

Comparison of miR-1 expression levels with SK-OV-3 (set 

to 1.0) revealed expression values of 2.5-fold (OVCAR-3), 

8.1-fold (UWB1.289), 12.8-fold (TOV-21G), and 36.7-fold 

(TOV-112D), demonstrating highly mutable expression rates 

of miR-1. However, due to variance only the mean miR-1 

expression in TOV-112D was statistically significant 

compared to the other cell lines. 

Cell growth kinetics of OC cell lines correlate with miR-1 

expression levels 

To determine whether different levels of miR-1 expression 

define differences in cellular growth of the OC cell lines, we 

counted living cells of incubated OC cells at indicated time 

points over a period of 144 h (Figure 2). Notably, cellular 

proliferation was found being linked to the basal expression 

of miR-1: TOV-112D (24 h: 2.1 ± 0.7, 48 h: 5.8 ± 0.1, 72 h: 

12.2 ± 0.9, 96 h: 20.3 ± 0.8, 120 h: 32.0 ± 6.8, 144 h: 42.2 ± 

5.4); TOV-21G (24 h: 2.7 ± 0.6, 48 h: 5.3 ± 0.0, 72 h: 11.9 ± 

2.1, 96 h: 24.6 ± 5.4, 120 h: 38.3 ± 7.7, 144 h: 51.3 ± 10.7); 

UWB1.289 (24 h: 3.0 ± 0.6, 48 h: 4.7 ± 1.1, 72 h: 6.9 ± 1.8, 

96 h: 8.6 ± 0.3, 120 h: 13.8 ± 3.4, 144 h: 19.7 ± 4.2); 

SKOV-3 (24 h: 2.6 ± 1.6, 48 h: 4.3 ± 0.2, 72 h: 7.9 ± 0.8, 96 

h: 13.0 ± 1.8, 120 h: 15.7 ± 2.1, 144 h: 20.4 ± 0.5); 

OVCAR-3 (24 h: 3.0 ± 1.3, 48 h: 4.3 ± 0.1, 72 h: 7.2 ± 0.3, 

96 h: 10.9 ± 0.4, 120 h: 13.2 ± 2.2, 144 h: 15.9 ± 3.1). The 

higher the level of miR-1 in OC cells, the higher the rates of 

cell growth were detected (TOV-112D, TOV-21G), whereas 

moderate and low miR-1 expression were related to 

diminished cell proliferation (UWB1.289, SKOV-3, 

OVCAR-3). 

miR-1 expression in tissue samples from healthy donors 

and primary OC turmors varies compared to secondary 

tumor tissues from OC patients 
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While differential expression of miR-1 was detectable in 

OC cell lines, tumor samples were included in this 

preliminary study to perform a miR-1 expression profiling. A 

total of 21 tumor samples from OC patients were compared 

to ovarian tissue samples from 4 non-malignant donors 

obtained from the Department of Gynecology and Obstetrics 

at the University Medicine Greifswald. OC patients were 

caucasians with an average age at the time of surgery of 59.7 

and FIGO stages from III to IV (Table 1). OC samples were 

sub-classified in primary tumor tissue (n=12; patient no. 1 to 

12) and samples from relapsed tumors (n=8; patient no. 9 to 

17). Noteworthy, four samples of both groups were obtained 

from the same four individuals (patient no. 9 to 12). 

Box plot analysis of intracellular miR-1 concentration 

graphically depicted no significant differences in miR-1 

expression in healthy tissue and primary tumor samples 

(Figure 3A). In contrast, miR-1 expression in relapsed 

tumors appeared being upregulated compared to primary 

tumors. Notably, a subset analysis of patients 9 to 12 

demonstrated that there was a distinct rise in miR-1 

expression comparing primary and relapsed tumor tissues in 

individual patients (Figure 3B). 

Discussion 

OC is a highly heterogenous and severe malignant disease, 

for which no satisfactory treatment options are yet available. 

Due to the fact that molecular research should provide 

much-needed information about novel predictive and 

prognistic factors, we analyzed the expression of miR-1 in 

OC cell lines and tumor samples. The panel of probed OC 

cell lines demonstrated highly variable miR-1 concentrations 

reaching a basal level up to 36.7-fold higher in TOV-112D 

cells than in the low-expression cell line SKOV-3. miR-1 

was strongly expressed in TOV-112D and TOV-21G cells, 

and moderate expressed in UWB1.289 cells, whereas 

SKOV-3 and OVCAR-3 cells weakly expressed miR-1. 

Recent studies stated miR-1 functionality in solid 

malignancies as tumor-suppressive. Molecular analysis in 

bladder cancer 
[14, 15]

, prostate cancer 
[9, 10, 16]

, colon cancer 
[11, 

17]
, and renal cell carcinoma 

[18]
 strongly interrelated cellular 

miR-1 properties with mechanisms of growth inhibition and 

general anti-oncogenic cell response. On the contrary and 

rather surprisingly, miR-1 levels in OC cell lines as 

determined in this study were linked to in vitro growth 

characteristics of the cells: high level miR-1 cell lines 

(TOV-21G, TOV-112D), however, demonstrated clearly 

higher proliferation rates than OC cells bearing lower levels 

of miR-1 (UWB1.289, SKOV-3, OVCAR-3). 

In order to shed further light on the putative role of miR-1 

in OC, we assessed miR-1 expression levels in primary and 

relapsed states of OC. A comparison of ovarian miR-1 status 

of healthy women with primary OC tumors disclosed none or 

even low differences in expression. Interestingly, miR-1 

levels analyzed in the subsets of primary and relapsed 

tumors, however, revealed elevated values and a higher 

median of miR-1 concentration in relapsed tumors. 

Admittedly, variations as well as few numbers of samples in 

this preliminary study prohibited statistical analysis of the 

box plot presentation. Further analysis of primary and 

relapsed tumors from individuals underscored the previous 

findings: all samples of the four patients showed an increase 

of miR-1 expression from primary to relapsed tumor 

samples. 

Figure 1. miR-1 analysis in established OC cell lines revealed 
highly variable expression levels. Relative miR-1 levels 
normalized to intracellular U6 RNA concentrations ranged from 0.03 
± 0.05 (1.0-fold; SKOV-3) to 1.10 ± 0.32 (36.7-fold; TOV-112D). 
Columns were calculated as the mean ± SD of relative miR-1 
concentrations with given p values determined by Student's t test. 
 

Figure 2. Growth characteristics of OC cell lines correlated 
with intracellular miR-1 concentrations. Cellular growth was 
determined at indicated time points utilizing a CASY Cell Counter 
and Analyzer Model TT. High level miR-1 cell lines (TOV-112D, 

TOV-21G) demonstrated clearly higher rates of proliferation 
compared to moderate and low miR-1 expressing cells (UWB1.289, 
SKOV-3, OVCAR-3). Results are expressed as the mean ± SD of 
105 cells. 
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In conclusion, a clear decrease of miR-1 in malignant 

compared to healthy tissue as recently described in cancer of 

bladder 
[14]

, colon 
[17]

, prostate 
[19]

, and lung 
[20]

, has not been 

detected in OC. Furthermore, combining miR-1 in OC cell 

lines was linked to higher proliferation, together with 

potentially up-regulated miR-1 levels in relapsed and 

therefore highly oncogenic OC, makes miR-1 role as tumor 

suppressor rather implausible. This may suggest that (1) 

miR-1 may be able to govern OC cell growth contradicting 

the tumor suppressor properties observed in other cancer 

types, or (2) miR-1 tumor suppressor functions may be 

dysregulated in OC cells by the disruption of 

miR-1-depending signaling cascades and/or effector 

molecules. Although miR-1 functionality in OC oncogenesis 

remains unclear, however, elevated levels of miR-1 during 

tumor progression may serve as a promising marker for OC 

recurrence. 

Abbreviations 

Ovarian cancer (OC), microRNA-1 (miR-1), 

intraoperative mapping of ovarian cancer (IMO) 

Figure 3. Analysis of primary and relapsed OC tumor samples demonstrated no 

attenuation of miR-1 compared to healthy tissue and tended to result in increased 
levels of miR-1 in relapsed tumors. Relative miR-1 levels normalized to intracellular 
U6 RNA concentrations of healthy (n=4) ovarian samples, and primary (n=12) as well as 
relapsed (n=9) OC tumor samples showed no reduction in miR-1 expression in 
malignant tissues. Comparison of primary and relapsed tumor samples indicated a 
weak increase of miR-1 within the subset of relapsed tissues. Results are expressed as 
box plot presentation; variations and few numbers of samples prohibited statistical 

analysis (A). Analysis of four patients from which primary as well as relapsed samples 
were available indicated elevated levels of miR-1 in all of the relapsed state of OC. 
Columns were calculated as the mean ± SD of relative miR-1 concentrations with given 
p values determined by Student's t test (B). 
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