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MiR-92a – a key player in cardiovascular remodeling 
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Small non-coding, highly conserved microRNAs (miRs) play a crucial role in gene regulation, especially in 

post-transcriptional gene silencing, and are important for vascular homeostasis as well as during 

pathophysiological vascular remodeling processes. MiR-92a is known to attenuate endothelial cell proliferation, 

and angiogenesis. Conversely, down regulation of miR-92a improves these endothelial cell-dependent processes. 

We recently showed that inhibition of miR-92a also accelerates the re-endothelialization process and thus 

prevents neointima formation following wire-induced injury of murine femoral arteries. Thus, inhibition of 

miR-92a may represent a promising therapeutic strategy for the treatment of vascular diseases. 
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Percutaneous coronary interventions for the treatment of 

coronary atherosclerosis count to the most frequently 

performed therapeutic procedures in medicine 
[1]

. The

inevitable endovascular injury triggers a healing process of 

the arterial wall resulting in neointimal hyperplasia and 

vessel remodeling 
[2]

. Drug-eluting stents with local delivery

of anti-proliferative agents are one of the most important 

achievements of modern interventional cardiology. These 

stents sufficiently prevent vessel re-narrowing and thereby 

markedly reduce the rate of repeat revascularization. 

However, the substances currently used on drug-eluting stent 

platforms often impair endothelial coverage of stent struts 

thus initiating a chronic inflammatory process, delaying 

arterial healing, and increasing the risk of thrombotic events 
[3]

. Hence, the investigation of molecular strategies targeting

specifically the function of distinct cell types i.e. smooth 

muscle cell proliferation without affecting endothelial cell 

regenerative capacity are coming in the focus of novel 

treatment approaches. In this context, selective enhancement 

of endothelial regeneration after vascular injury has recently 

been shown to prevent neointimal lesion formation 
[4]

.

Small non-coding microRNAs (miRs) involved in 

post-transcriptional gene silencing are known to control 

several physiological and pathophysiological processes in the 

vascular wall 
[5, 6]

. MiR-92a is a member of the miR-17~92a

cluster comprising six mature miRs, which are involved in 

the regulation of cell proliferation, development, immunity 

and tumorigenesis. Specifically, miR-92a has been shown to 

inhibit EC proliferation, angiogenesis, and vascular repair by 

an attenuation of the expression of validated target genes, i.e. 

the class III histone deacetylase sirtuin (Sirt)-1, integrin α5 

(Itga5), and the flow-induced atheroprotective transcription 

factors Krüppel-like factor (Klf)-2 and Klf4 
[7-10]

.

In initial observations, we detected miR-92a expression 

primarily in EC of uninjured murine vessels. Consecutively, 

we evaluated the spatiotemporal expression of miR-92a in a 

mouse model of wire-induced injury of the mouse femoral 

artery and found miR-92a levels significantly up-regulated in 

endothelial cells adjacent to the vascular injury site 
[11]

.

Following the overexpression of miR-92a in EC in vitro, we 

observed a significantly reduced proliferation and migration 

in ECs but not in SMCs, suggesting that the functional 
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impact of miR-92a is predominantly restricted to EC. Neither 

ECs nor SMCs showed changed apoptotic rates following 

sole overexpression of miR-92a 
[11]

. We then abrogated 

miR-92a expression following vascular injury by the use of 

two different strategies. Both, systemic injection of locked 

nucleic acid-based (LNA)-antimiRs and specific deletion of 

endothelial miR-92a using Tie2-Cre; miR-92a (fl/fl)-mice 

accelerated the re-endothelialization process. Furthermore, 

we found a reduced number of CD68
+
 monocytes/ 

macrophages accumulating in the lesions as well as a reduced 

number of proliferating Ki67
+
 SMCs within the vessel wall, 

and an impairment of neointima lesion development. As 

expected, the expression of the pro-angiogenic miR-92a 

target genes Sirt1 and Itga5 was strongly increased at 2 

weeks after wire-induced injury
[11]

. Itga5 interacts with 

fibronectin, which represents the major component of the 

early extracellular matrix, and its expression has been shown 

to be an important prerequisite for vascular regeneration 
[12]

. 

The histone deacetylase Sirt1 regulates the expression and 

activity of numerous pro-angiogenic proteins and has been 

shown to have an inhibitory effect on neointima formation 
[13]

. Both have a critical impact on EC migration and 

proliferation, indicating that therapeutic inhibition of 

miR-92a to stimulate re-endothelialization involves at least 

in part the de-repression of these factors 
[14]

.  

In addition to neointima formation, miR92a has been 

shown to promote an atheroprone EC phenotype inter alia by 

suppression of the endothelial nitric oxide synthase in 

response to locally disturbed blood flow 
[6, 9]

.  Consistently, 

specific blockade of miR-92a in LDLR
-/-

 mice reduced 

endothelial inflammation and decreased atherosclerotic 

plaque burden 
[15]

. Interestingly, circulating levels of 

miR-92a are significantly downregulated in patients with 

coronary artery disease, which might represent a 

compensatory mechanism. Selective analysis of these 

patients for vasculoprotective drug therapies revealed a trend 

towards lower levels of miR-92a in patients with statin 

therapy compared with patients without statin therapy 
[16, 17]

. 

Thus, low circulating levels of miR-92a likely represent a 

compensatory protective mechanism that might be boosted in 

response to statin therapy.  

Expression of miR-92a is under control of several 

transcription factors 
[18, 19]

. Most of them are known to be 

critically involved in vascular remodeling even before miRs 

came to the focus of research interest 
[11, 20, 21]

. Inhibition of 

their transcriptional activity or targeting the respective 

downstream signaling pathways have been shown to prevent 

neointima formation. As mentioned above and in contrast to 

the expression of these transcription factors, miR-92a seems 

to be predominantly expressed in ECs, so that clinical 

inhibition of miR-92a might exert higher cell specificity than 

inhibition of the respective transcription factors.  

Regarding a possible translational approach using 

miR-inhibitors, a LNA-based therapy targeting miR-122 

using a modified DNA phosphorothioate antisense 

oligonucleotide that binds miR-122 in a stable heteroduplex, 

thereby inhibiting its function, was demonstrated to be safe 

and efficiant in a first-in-man phase II trial in patients 

suffering from chronic hepatitis C 
[22]

. However, miR-based 

therapeutics have not yet entered the stage of clinical trials 

for cardiovascular disorders. But given the very recent 

successful inhibition of miR-92a in a large-animal model of 

cardiac ischemia/reperfusion which resulted in a significant 

reduction of infarct size on the one hand and the pivotal role 

of miR-92a in vascular diseases on the other hand suggest 

that inhibition of miR-92a might emerge as a novel, 

promising therapeutic approach for the treatment of 

cardiovascular diseases 
[23]

.  
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