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RNA Pol II elongation in eukaryotes is coupled with a series of histone modifications. Elongating RNA Pol II can 

be strongly stalled by lesions on the DNA template. However, it is unclear whether RNA Pol II stalling affects 

elongation-associated histone modifications. We have explored this important question by investigating the 

function of histone H2B mono-ubiquitylation (H2Bub), a well-characterized epigenetic mark associated with 

RNA Pol II elongation, in the cellular response to DNA lesions induced by ultraviolet (UV) radiation. We found 

that, in contrast to transcription elongation, RNA Pol II stalling induced by UV lesions triggers rapid and 

significant H2B deubiquitylation that removes ubiquitin from H2B. Interestingly, in yeast mutant cells that lack 

H2B deubiquitylation enzymes, rescue of the stalled RNA Pol II by transcription-coupled repair (TCR) is 

significantly impaired. Thus, our study has established a direct connection between RNA Pol II stalling and a 

histone modification response. 
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At the primary level of packaging, genomic DNA in 

eukaryotic cells is wrapped around histone proteins to form 

the nucleosome, a modular assembly of two stable 

heterodimers of H2A/H2B and one H3/H4 tetramer 

associated with 147 bp of DNA 
[1]

. Nucleosomes are further

packaged into a structural hierarchy to form the compact 

structure of chromatin 
[2]

. Histones can be extensively

modified by a wide variety of enzymes 
[3]

. The epigenetic

marks on histones play important roles in processes 

occurring on chromatin, such as transcription, DNA 

replication, and DNA repair 
[4]

. Histone H2B

mono-ubiquitylation (H2Bub) is a conserved modification 

from yeast to mammals. Ubiquitin can be attached to the 

C-terminal lysine residue (K123 in yeast and K120 in 

mammals) by the E2 conjugating enzyme Rad6 and the E3 

ligase Bre1 
[5, 6]

. Conversely, H2B ubiquitylation can be

reversed by the deubiquitylases Ubp8 and Ubp10 in yeast
 [7,

8]
. Previous studies have demonstrated that RNA Pol II

elongation is essential for ubiquitylation of H2B, with the 

Rad6-Bre1 complex traveling with the elongating form of 

RNA Pol II and adding ubiquitin to H2B during the 

elongation process (reviewed in
 [9]

). Since H2Bub

predominantly occurs in transcription elongation, it suggests 

that H2Bub may play an important role in RNA Pol II 

elongation. Indeed, mutation of the yeast H2B K123 residue 

renders the cells hypersensitive to the transcription 

elongation inhibitor 6-azauracil (6-AU) 
[10]

. Detailed

mechanistic studies show that ubiquitylation of H2B 

facilitates transcription elongation by promoting nucleosome 

reassembly in the wake of RNA Pol II transcription 
[11-13]

.

Additionally, H2Bub plays an essential role in mediating H3 

K4 and K79 tri-methylation 
[14]

, two epigenetic marks that

are associated with active RNA Pol II transcription 
[15]

.
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Elongation of RNA Pol II can be strongly stalled by DNA 

lesions such as UV-induced helix-distorting DNA damage 
[16]

. Presumably, the stalled RNA Pol II prevents 

its-associated Rad6-Bre1 complex from adding ubiquitin to 

new H2B proteins. Whether the pre-existing ubiquitylation is 

maintained or reversed upon UV damage-arrested RNA Pol 

II needs to be experimentally tested. We addressed this 

question by studying cellular H2Bub levels at different times 

after UV radiation. Our data indicate that UV light stimulates 

a rapid and significant decrease in H2Bub levels in both 

yeast and human cells 
[17]

. H2Bub is gradually recovered 

after a significant amount of UV damage in the genome has 

been repaired and transcription is resumed. In contrast to the 

H2B deubiquitylation response, H3 K4 and K79 

trimethylation is not altered by UV radiation, indicating an 

uncoupling of the mechanism between H2B deubiquitylation 

and H3 demethylation. We further showed that the H2B 

deubiquitylation is triggered by UV-induced RNA Pol II 

stalling, as revealed by a significantly weaker H2B 

deubiquitylation response in a UV damage-bypassing RNA 

Pol II mutant.  

As mentioned above, H2B deubiquitylation in yeast is 

catalyzed by two enzymes, Ubp8 and Ubp10. Our data 

showed that the UV-induced H2Bub decrease is slightly 

compromised in ubp8 or ubp10 single mutants; but is 

completely abolished in the ubp8ubp10 double mutant, 

indicating a partially redundant function between Ubp8 and 

Ubp10 in deubiquitylating H2B in response to UV damage. 

The deubiquitylase Ubp8 has been shown to physically 

interact with elongating RNA Pol II to prevent excess H2B 

ubiquitylation during transcription elongation 
[18]

. We found 

that Ubp10 also interacts with RNA Pol II, in a UV 

damage-independent manner. These observations identify 

RNA Pol II-associated Ubp8 and Ubp10 as a key link 

between H2B deubiquitylation and RNA Pol II stalling, 

indicating that the RNA Pol II stalling functions as a signal 

to activate its-associated H2B deubiquitylases.   

The stalled RNA Pol II is extremely toxic to cell survival, 

as it blocks the passage of subsequent DNA or RNA 

polymerases, and also inhibits the access of DNA repair 

proteins to the damaged site. A specialized DNA repair 

pathway, transcription-coupled repair (TCR), has evolved to 

rescue DNA damage-arrested RNA polymerases 
[19]

. 

Although much of the enzymology of TCR has been 

elucidated, the mechanism(s) of how this repair pathway 

interacts with chromatin remains unclear. Previous studies 

have revealed that the histone acetyltransferase p300 is 

recruited to UV damage-arrested RNA Pol II, suggesting a 

potential role of histone acetylation in TCR 
[20]

. As we 

observed the induction of H2B deubiquitylation by 

Figure 1. Model for H2B deubiquitylation in response to UV damage-induced RNA Pol II stalling. Ubiquitin is added 
to H2B by the Rad6-Bre1 enzymes associated with the elongating Pol II during transcription elongation. When the 
elongating Pol II is arrested by UV damage, the stalled RNA Pol II acts as a signal to activate its-associated Ubp8 and 
Ubp10 to deubiquitylate H2B. H2B deubiquitylation facilitates disruption of nucleosomes adjacent to the stalled RNA Pol II, 

which is necessary for the subsequent recruitment/assembly of TCR machinery to reversely translocate RNA Pol II and 
repair the UV DNA damage. 
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transcription stalling, we further explored the impact of H2B 

deubiquitylation on TCR. Importantly, UV damage repair by 

TCR in the transcribed strand of an actively transcribed gene 

(Rpb2) is significantly impaired in yeast cells lacking H2B 

deubiquitylases. Consistent with the TCR deficiency, the 

nucleosome occupancy is higher in the ubp8ubp10 double 

mutant, and UV-induced nucleosome disruption is less 

efficient in the mutant. Taken together, the data suggest that 

H2B deubiquitylation is an important mechanism to ‘loosen’ 

nucleosome structure adjacent to UV damage-stalled RNA 

Pol II, thus allowing access of the TCR machinery to the 

damaged sites.  

In summary, as shown in Figure 1, we have characterized 

the response and function of histone H2B deubiquitylation 

upon RNA Pol II stalling induced by UV damage to DNA. 

Our data demonstrate that H2B undergoes a rapid and 

significant deubiquitylation process, catalyzed by the 

deubiquitylases associated with RNA Pol II. This 

deubiquitylation mechanism appears to be important for 

destabilizing nucleosomes near the stalled RNA Pol II to 

increase the accessibility of UV damaged DNA to TCR 

proteins. We are currently investigating the mechanism by 

which the H2B deubiquitylases are activated by stalled RNA 

Pol II. It is interesting to note that activation of the yeast 

TCR protein Rad26 (an otholog to mammalian Cockayne 

syndrome group B protein, CSB) by UV damage requires its 

phosphorylation 
[21]

. A similar mechanism may also apply to 

the activation of H2B deubiquitylases upon RNA Pol II 

stalling.  
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