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Transplantation of mesenchymal stem cells (MSCs) into osteoarthritis (OA) and rheumatoid arthritis (RA) 
patients has been studied as a therapeutic tool for regeneration of damaged cartilage. MSCs have several 
beneficial effects, including immunomodulatory activity, and release various paracrine factors. Despite their 
abundant beneficial effects, transplantation of naïve MSCs is hampered by heterogeneous populations of 
differentiated and undifferentiated stem cells. However, transplantation of differentiated MSCs overcomes the 
problem of transplantation of naïve MSCs. Thus, to repair damaged tissue, a therapeutic strategy based on the 
use of differentiated MSCs is needed to treat RA or OA patients. Here, we summarize methods that can regulate 
differentiation of MSCs into chondrocytes by small molecules or miRNAs, and suggest the capacity of patient 
tissue-derived MSCs as a therapeutic strategy for treatment of OA or RA patients. 
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Introduction 

Disruption of cartilage homeostasis is induced by 
combinations of biological mediators, which leads to the 
development of joint diseases such as osteoarthritis (OA) or 
rheumatoid arthritis (RA) [1, 2]. OA is characterized by 
disruption of the homeostatic balance between synthesis and 

degradation of cartilage components, including 
proteoglycans and other matrix components [3]. RA is 
induced by inflammation and catabolic driven cartilage loss 
[2]. An articular cartilage defect is an area of damaged or 
missing cartilage that is often caused by acute trauma 
because articular cartilage has a limited capacity for 
self-repair [4, 5]. Thus, regeneration of damaged cartilage is 
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required in chondrocytes.  

Among the cell sources that have the ability to regenerate 
cartilage, mesenchymal stem cells (MSCs) have the capacity 
for treatment of articular cartilage defects [6]. MSCs have the 
capacity to repair damaged tissue and exert 
anti-inflammatory effects via cell to cell interaction or 
secretion of various factors. Thus, MSCs transplantation has 
been suggested as a therapeutic tool for treatment of joint 
diseases [7-9]. However, MSCs transplantation induces 
problems including acute graft-versus-host disease (GvHD) 
and autoimmune disease [10]. As a result, differentiated stem 
cells that have characteristics similar to host cells are needed 
for transplantation into damaged areas.  

Differentiation of MSCs into specific cell types is 
regulated by intrinsic/extrinsic regulators and the 
extracellular niche [11]. Since small molecules have beneficial 
properties including rapid, reversible response and temporal 
regulators of protein function, their use has been suggested 
among several strategies to regulate cell fate [12, 13]. In 
addition, small molecules have been shown to regulate the 
fate of various tissue-derived MSCs via activation or 
inhibition of specific target proteins [14-16]. 

MicroRNAs (miRNAs) can also induce differentiation of 
MSCs into various cell types, including myoblasts, neurons, 
adipocytes, osteoblasts, and chondrocytes [17]. MiRNAs are a 
class of small non-coding RNAs that inhibit target gene 
expression via sequence specific interactions with the 3’ 
untranslated regions (UTR) of mRNAs. MiRNAs also 
regulate target gene expression via degradation and/or 
repression of the translation of mRNA [18, 19]. Thus, it has 
been suggested that MSCs that have been differentiated into 
specific cell types by tissue-specific miRNAs be transplanted 
into patients for the treatment of joint disease. In the present 
review, we focused on the role of MSCs as a therapeutic 
strategy for treatment of OA or RA patients, as well as the 
methods required to induce differentiation into chondrogenic 
cells by miRNAs and small molecules. We also discuss the 
possibility for use of miRNAs or small molecules as a tool 
for differentiation of MSCs into chondrogenic cells. 

Characteristics of adult stem cells used for treatment of 
diseases 

Identification of Adult Mesenchymal Stem Cells 

Adult stem cells are defined as cells that possess 
self-maintenance, proliferation and differentiation potential 
[20]. These cells are essential to physiological tissue 
homeostasis, renewal and regeneration of parenchymal cells 
after damage [21-23]. Adult stem cells generally reside as 

tissue-specific stem cells in many major organs in adult 
organisms, including bone marrow, heart, the nervous 
system, skin, skeletal muscle, cartilage, and fat [21, 22]. These 
characteristic suggest that all adult stem cells exist in unique 
microenvironments, or niches [23]. Niches contain 
heterogeneous cells and extracellular matrix proteins [23]. 
Adult stem cells also have plasticity, which means they can 
generate a fixed range of progeny when relocated to enable 
generation of specialized cells appropriate to their new niche 
[22]. In fact, adult stem cells are known to be surprisingly 
flexible in their differentiation repertoires in adult humans 
and rodents [22]. Adult stem cells are classified into 
hematopoietic stem cells, mesenchymal stem cells, and 
somatic stem cells. Mesenchymal stem cells (MSCs) are a 
subcategory of adult stem cells that can be roughly defined as 
mesenchyme for tissue [24]. MSCs are classified as umbilical 
cord-derived, bone marrow-derived, muscle-derived, 
cartilage-derived, tendon-derived, adipose tissue-derived, and 
synovial fluid-derived based on the mesenchymal tissue from 
which they originate [20]. MSCs are essential for 
physiological tissue homeostasis, renewal and regeneration 
based on their abilities for self-maintenance, proliferation 
and differentiation [21, 22]. Because MSCs have enormous 
values, they have been the object of extensive research for 
decades [25]. 

Therapeutic Potential of Adult Mesenchymal Stem Cells 

MSCs are defined as highly adherent, proliferative 
undifferentiated multipotent cells with the potential to 
expand extensively in vitro [24, 26]. MSCs were first 
characterized in bone marrow, and it is now recognized that 
various adult components provide abundant MSCs, including 
bone marrow, peripheral blood, the heart, dental pulp, 
skeletal muscle, adipose tissue, and synovial fluid [27]. The 
cells have ability to differentiate into mesenchymal lineages 
such as bone, cartilage, tendons, adipose, muscle, marrow 
stroma, and neural cells [20, 28]. The multipotent potential of 
MSCs is an advantage, as is their easy isolation and culture, 
highly expansive ability in vitro, support of hemopoiesis, 
immunoregulation and secreted factors [24, 25]. MSCs also 
have the capacity to induce immunosuppressive effects 
during engraftment of MSCs in recipients, improving 
angiogenesis and preventing fibrosis [29]. This potential for 
feasible and safe administration has resulted in a broad 
interest in the clinical use of MSCs [27]. Taken together, these 
advantages make MSCs attractive and promising for 
application in many different fields, including tissue 
engineering and clinically-viable cell therapy, and there are 
now numerous trials being conducted to investigate their use 
in a wide range of diseases including stroke, heart failure, 
liver failure, and osteogenesis imperfecta [22, 24, 27, 30]. Chen et 
al. confirmed that symptoms of ischemic stroke were 
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moderated by transplantation of MSCs. Specifically they showed that MSCs could survive, migrate, and differentiate  

Table 1. Summary of small molecules regulating differentiation of stem cells 

Small molecule Cell type Function Target Reference 

H-89 Human bone marrow-derived 
MSCs 

Stimulation of 
differentiation 

PKA inhibitor 39 

Kartogenin Human bone marrow-derived 
MSCs 

Stimulation of 
differentiation 

disrupts core-binding factor β 
subunit 

40 

Harmine ATDC5 Stimulation of 
differentiation 

Inducer of CCN2 42 

SB216763 ATDC5 Inhibition of differentiation GSK-3β inhibitor 43 

Pam3Cys Murine MSCs Inhibition of differentiation TLR inhibitor 44 

 

Table 2. Summary of miRNA induced differentiation into chondrocytes 

MicroRNA Cell Type Function Target gene Reference 

miR-23b Human SF-MSCs Stimulation of differentiation PRKACB 29 

miR-101 Chicken limb mesenchymal 
cells 

Stimulation of differentiation Dnmt3b 54 

miR-194 Human adipose-derived MSCs Stimulation of differentiation Sox5 55 

miR-455 ATDC5 Stimulation of differentiation Smad2 56 

 

into parenchymal cells in adult mice brains after ischemia. 
Transplantation of bone marrow MSCs has also been shown 
to reduce ischemic stroke-induced behavioral deficits in mice 
[31]. Qin et al found that osteogenesis was effectively induced 
by attaching MSCs within biomaterial scaffold, including 
hydroxyapatite and tricalcium phosphate [32]. Morishita et al 
demonstrated the effects of MSCs-bioscaffold applied to 
treat bone defects after tumor resection at the distal tivia by 
attaching autologous MSCs to hydroxyapatite to induce bone 
reconstruction [33]. 

Differentiation of MSCs into chondrocytes by miRNA or 
small molecules 

Differentiation of MSCs into Chondrocytes by Small 
Molecules 

Several reports have shown that small molecules have the 
capacity to control proliferation, differentiation, apoptosis, 
and migration of cells. Differentiation of MSCs through the 
use of small molecules was first reported in 1978 by 
Strickland and Mahdavi, who revealed that cell 
reprogramming is induced by retinoic acid or cyclic AMP 
compounds [34]. In addition, chemical compounds can target 
specific enzymes or proteins by which maintenance, 
differentiation, and reprogramming of MSCs are controlled 
[35-37]. Moreover, regulation of stem cell fate by small 
molecules has enabled development of new drugs using the 
patient’s own cells residing in different tissues or organs to 

treat diseases [38]. Several studies have shown the 
differentiation of MSCs into chondrogenic cells by treatment 
with small molecules. Ham et al. reported that treatment with 
H-89, a protein kinase A (PKA) inhibitor, promoted 
chondrogenic differentiation of bone-marrow derived MSCs 
[39]. Johnson et al. reported that small molecule kartogenin 
promotes chondrocyte differentiation. Specifically, they 
found that, in addition to its chondro-protective effects in 
vitro, it is efficacious in OA animal models [40]. Moreover, 
harmine induced differentiation into chondrocytes in 
ATDC5, a line of mESCs [41, 42]. However, some studies have 
suggested that inhibition of specific pathways such as 
GSK-3β or TLR prevents differentiation of stem cells into 
chondrocytes by treatment of SB216763 or Pam3Cys [43, 44]. 
Taken together, these reports suggest that small molecules 
have the potential for differentiation of stem cells into 
chondrocytes via regulation of specific proteins or signal 
pathways. Thus, differentiation of stem cells into 
chondrocytes is a good strategy for development of novel 
treatments for OA or RA patients. 

MicroRNAs for Differentiation of MSCs into Chondrocytes  

MicroRNAs play essential roles in various biological 
processes including development, proliferation, death and 
differentiation. Many studies have recently reported that a 
variety of cells including cardiac muscle cells [45], nerve cells 
[46], muscle cells [47], liver cells [48] undergo differentiation in 
response to microRNA treatment [49]. 
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miRNAs are small non-coding single strand RNAs that 
play important roles as key regulators of gene expression via 
post-transcriptional regulation of target mRNA or 
translational inhibition of target proteins by associating with 
the 3’-untranslated region (3’-UTR) of target genes [50]. The 
expression of miRNAs changes during differentiation of 
MSCs into chondrocytes. For example miR-574-3p, and 
miR-335 are highly upregulated in MSCs [51, 52]. Additionally, 
MiR-24 and miR-199a increased by over five-fold during 
differentiation into chondrocytes and osteoblasts [53]. Several 
studies have suggested methods for inducing differentiation 
into chondrocytes by overexpression of miRNAs. For 
example, Ham et al. found that miR-23b facilitated 
differentiation of human SFMSCs into chondrocytes, and 
that it increased expression of the chondrocyte markers, 
collagen type II, collagen type X, and Sox9. Conversely, 
miR-23b reduced expression of hypertrophic markers of 
MMP-2 and MMP-9 [29]. Kim et al. also reported that two 
non-coding RNAs, miR-101 and HOTTIP, induced 
chondrogenesis of limb mesenchymal cells by targeting 
Dnmt3b. Their study revealed that HOTTIP, non-coding 
RNA, and miR-101 were important to treatment of arthritis 
[54]. In addition, miR-194 and 455 reportedly induced 
chondrogenesis in ASC and ATDC5 cells [55, 56]. Based on 
these studies, miRNAs are one of the crucial factors involved 
in induction of differentiation of MSCs into chondrocytes. 
As a result, microRNA will be the focus of new therapeutic 
strategies for treating arthritis in future studies.  

Therapeutic strategy for OA or RA patients  

Transplantation of Synovial Fluid-derived Mesenchymal 
Stem Cells from Patients 

OA and RA are the most common forms of articular 
disorders. OA occurs throughout the joint and ultimately 
causes articular cartilage loss and progressive joint 
degeneration [57]. RA is an autoimmune disease characterized 
by systemic inflammation and persistent synovitis that 
destroys the joint via progressive cartilage degeneration and 
bone alterations [58]. Injury of articular cartilage has been 
treated by perichondrium transplantation and autologous 
chondrocyte implantation, but these approaches are limited 
by their invasiveness, graft site morbidity, low number of 
harvested chondrocytes, and loss of functionality after 
several passages of in vitro culture [59]. Autologous 
chondrocyte transplantation, which has been used widely 
since 1994, is the first method of treatment developed by 
Matts Brittberg [60]. This method facilitates the regeneration 
of damaged cartilage by autologous chondrocyte 
transplantation of cells cultured in vitro. This technique 
requires a culture time of about 4 weeks to obtain a sufficient 
number of cells; however, the use of stem cells has been 

proposed to solve these limitations. SF micro-environment of 
the diseases can be to induce response of cytokines and 
chemokines, and inflammatory, which are able to enhance 
proliferative response of SF-MSCs [59]. Therefore, use of 
SF-MSCs from patients might be an alternative therapeutic 
application for OA and RA owing to the abundance and 
accessibility of human synovial fluid, as well as their 
efficacy and safety [29]. SF-MSCs represent an attractive 
therapeutic candidate for cartilage repair in response to 
conditions such as osteoarthritis (OA) and rheumatoid 
arthritis (RA) therapy because of their multipotency, ex vivo 
proliferation capacity, and high chondrogenic potential 
relative to MSCs from other tissues, as well as their ability to 
expand over a short time period after joint disease and injury 
[59, 61, 62]. Previous studies have demonstrated that the use of 
SF-MSCs for OA and RA could mitigate these disorders. For 
example, intra-articular injection of MSCs from synovium 
enhanced cartilage regeneration in a rabbit cartilage defect 
model [64] and contributed to meniscus regeneration in a rat 
meniscus defect model [65]. Moreover, engrafting of 
SF-MSCs was shown to have the potential to increase the 
number of intra-articular MSCs, resulting in their migration 
to the site to participate in repair response [64].  

In conclusion, this review suggests that MSCs can be 
differentiated into chondrocytes through the use of miRNAs 
or small molecules. Moreover, transplantation of SF-MSCs 
from a patient’s own cells that have been induced to 
differentiate into chondrocytes has the potential to treat 
damaged tissue.  
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