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RNA is a fundamental class of biomolecules that mediate a large variety of molecular processes within the cell. 
Computational algorithms can be of great help in the understanding of RNA structure-function relationship. 
One of the main challenges in this field is the development of structure-prediction algorithms, which aim at the 
prediction of the three-dimensional (3D) native fold from the sole knowledge of the sequence. In a recent paper, 
we have introduced a scoring function for RNA structure prediction. Here, we analyze in detail the performance 
of the method, we underline strengths and shortcomings, and we discuss the results with respect to 
state-of-the-art techniques. These observations provide a starting point for improving current methodologies, 
thus paving the way to the advances of more accurate approaches for RNA 3D structure prediction. 
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Introduction 

RNA molecules carry out a large number of functions 
within cells, ranging from gene expression to gene regulation 
(i.e. riboregulation) and to catalysis. An increasing number 
of recent studies suggest that mutations in RNA-binding 
proteins and in non-coding sequences of the genome 
corresponding to RNA regulatory elements play an important 
role in many genetic diseases [1,2] such as in autoimmune 
diseases [3,4]. Additionally, changes in the level of non-coding 
RNAs have been observed in various cancers [5] and other 
pathological conditions such as cardiomyopathy [6] and 
neurodegeneration [7]. These diseases are typically associated 
with anomalous down- or up-riboregulation or with abnormal 
RNA molecules concentration [8]. Consequently, it is 
common to use specific RNA molecules as tumor markers [9] 
or for viral micro-RNA to be recognized as etiologic agents 
causing disease in humans [10]. Furthermore, RNA 
interference is considered asa new alternative in the 
therapeutic treatment of genetic and autoimmune diseases 
[11,12]. 

It is therefore of paramount importance to understand at a 
molecular level the function of RNA molecules. As for 
proteins, the function and mechanism of RNA molecules are 
intimately related to their three-dimensional structure – 
which is dictated by their sequence. A large suite of 
experimental approaches for determining the sequence and 
the secondary structure of RNA molecules exists. However, 
the atomic-detailed determination of the three-dimensional 
(3D) structure via X-ray crystallography or nuclear magnetic 
resonance (NMR) experiments of RNA is still very complex 
an expensive. This motivated the development of 
computational algorithms to model and predict RNA 
structure [13].  

Many RNA 3D structure prediction algorithms typically 
rely on two ingredients: i) a sampling scheme, that generates 
putative RNA 3D structures (also called decoys), and ii) a 
scoring function, that, in the ideal case, makes it possible to 
identify among the decoys those with a native-like 
conformation.  
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In a recent publication, we have shown that relative 
nucleobase positions and orientations are sufficient to 
describe RNA structure and dynamics [14]. Additionally, we 
have introduced a knowledge-based scoring function that can 
be used for RNA structural prediction (ESCORE). 

In this research highlight we scrutinize the prediction 
capabilities of the ESCORE. We consider the cases in which 
our approach successfully and unsuccessfully predicts 
near-native RNA structures, and we analyze in details the 3D 
structure of the best predictions.  

Results 

The relative positions and orientations of nucleobases in 
folded RNA molecules display very specific geometrical 
propensities, that are dominated by the presence of stacking 
and base-pairing interactions, as shown in Fig. 1.  

To each point of the space around a nucleobase can be 
therefore assigned the probability of observing a neighboring 
base in that specific position and orientation. In other words, 
given a pair of bases, it is possible to quantify to which 
degree their relative position and orientation is compatible 
with the expected distribution observed in known RNA 3D 
structures. Since ribosomal RNA is the one for which the 

largest and most complex structures are available, we base 
our analysis on a high-resolution structure of the large 
ribosomal subunit (PDB code 1S72 [15]). For example, in this 
structure, observing two stacked bases, or two 
complementary bases forming a Watson-Crick basepair, is 
highly probable, while it is very unlikely to find two bases in 
very close contact (clashing). Recently, we have introduced a 
measure, called ESCORE, which makes it possible to 
quantify the accordance of any arbitrary RNA 3D 
conformation with the local, three-dimensional probability 
map obtained from the large ribosomal subunit shown in Fig. 
1. The ESCORE serves as a scoring function for RNA 3D 
structure prediction. More precisely, given a large number of 
conformations of an RNA molecule (decoy set), the 
ESCORE ideally ranks these conformations from the closest 
to the furthest from the native state, without prior knowledge 
of the native state itself.  

We benchmark the ESCORE on 20 different decoy sets 
generated using the FARNA algorithm [16], which is a subset 
of the decoy sets we analyzed in our previous work [14]. This 
subset is particularly meaningful as a structure prediction 
exercise, since here the decoys were sampled without 
including any information about the actual experimental 
structure. For each decoy set, we assess i) if the known, 
native structure has the best score among all the decoys; and  

Figure 1. Three-dimensional distribution of nucleobases obtained from the crystal structure of the large 
ribosomal subunit. Different colors correspond to the different interaction types: Watson-Crick pairs in red/orange, 
non-canonical interactions in blue, stacked pairs in green. 
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Table 1. Summary of ranking and decoy screening capabilities of ESCORE 
PDB code Ranka RMSD best (Å)b Min RMSD (Å)c 

157D 0 3.54 1.46 

1A4D 0 23.57 4.06 

1CSL 0 3.96 3.28 

1DQF 0 3.04 2.39 

1ESY 0 3.70 2.75 

1I9X 0 4.79 3.0 

1J6S 0 10.66 2.94 

1KD5 2 4.22 2.52 

1KKA 151 4.15 3.53 

1L2X 0 13.62 3.81 

1MHK 0 9.03 4.68 

1Q9A 0 4.74 4.22 

1QWA 0 4.24 3.52 

1XJR 0 8.81 6.94 

1ZIH 0 1.84 1.63 

255D 0 1.90 1.72 

283D 0 3.12 1.73 

28SP 0 3.73 2.80 

2A43 0 4.78 4.52 

2F88 0 3.87 2.74 

For each decoy set, we report a) the number of decoys scoring better than native, over a total of 500 structures per 
decoy set; b) the RMSD from native for the best-scoring decoy; c) the distance of the closest-to-native structure within 
the decoy set. PDB codes relative to solution NMR structures are highlighted in gray. 

ii) the deviation between the native state and the best-scoring 
decoy. The latter test is more stringent, as in a real 
structure-prediction experiment the best-scoring decoy 
represents the putative native structure.  

The results, summarized in Table 1, show that for almost 
all decoy sets (18/20) the native state has a better (higher) 
ESCORE than any other structure in the decoy set (rank=0). 
Additionally, in these cases, the best-scoring decoy typically 
displays a similar secondary structure compared to the native 
state (Fig. 2), indicating that in a blind prediction test results 
would be satisfactory. 

For two decoy sets, however, a non-zero number of 
decoys score better than the native structure. The most 
emblematic example is shown in Fig.3. As in the previous 
case, the native and the best-scoring decoy both share the 
same secondary structure.  However, we notice that the 
ESCORE relative to the stem region is higher in the decoy 
when compared to the native structure. By close inspection, 
we observe that this discrepancy is due to a significant 
difference in the base-base vertical distance between 
consecutive, stacked bases (3.66±0.53 Å for the decoy and 
4.00±0.45 Å for native, considering the helix region only). 
More generally, it can be seen that the vertical distance 

between stacked bases in A-form helices of NMR models 
can deviate considerably from the typical distance observed 
in crystal structures. As an example, the vertical distance is 
3.42±0.32 Å for the crystal structure of the large ribosomal 
subunit and 4.17Å ± 0.45 Å for the NMR structure of the 
nucleolin-binding RNA hairpin (PDB code 1QWA [17]). This 
point is of particular importance when considering that 
ESCORE, as well as many other structure-prediction 
algorithms such as FARFAR [18] and RASP [19], are trained 
on high-resolution crystal structures. Therefore, it is not 
surprising that all these algorithms perform better on decoys 
relative to X-ray structures compared to NMR models, as 
also observed in the study of Bernauer et al. [20] 

Finally, we inspect the results obtained on the challenging 
decoy set relative to the loop D/loop E arm of E. coli 
5SrRNA, composed by a long stem with one terminal hairpin 
loop(PDB code 1A4D [21]). In this case, ESCORE correctly 
assigns to the native structure a good score (Fig. 4). 
However, the best scoring decoy is completely different from 
the native, featuring not one, but two hairpin loops. In    
Fig. 3 we also show that the secondary structure          
of  the  second-best  scor ing decoy i s  s imi la r  to           
that of the native state. Two items should therefore be 
addressed: i) why the two-best scoring decoys, that      
are completely different, have similar ESCORE; and ii) 
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why is the best-scoring decoy so different from the native. 

The answer to these questions can be found in the 
observation that the number of favorable base-base 
interactions in hairpin loops and in helices is very similar. 
Since the ESCORE can be considered as a weighted count of 
base-base interactions, good scores are assigned to both 
decoys, irrespectively of the presence of one or two hairpins. 
It is well known from secondary-structure studies that the 
presence of hairpin loops is energetically unfavorable with 
respect to helices [22]. This effect is not explicitly taken into 
account in the ESCORE, and is thus an important ingredient 
that could be used to improve the method. This explanation 
is also supported by the fact that the very same issue affects 
other scoring functions that heavily rely on local-contacts, 
such as FARFAR [18] and RASP [19]. 

Conclusions 

The ESCORE can correctly discriminate and rank decoy 
structures among most of the cases examined in this Paper. 
When compared with state-of-the-art, all-atom methods such 

as FARFAR or RASP, ESCORE consistently performs 
equally well and in some cases better, thus demonstrating the 
validity of the approach. We examined in detail two decoy 
sets for which ESCORE (as well as FARFAR and RASP) 
fails in identifying the closest-to-native decoy or in assigning 
the best score to the native structure, and we identified two 
major sources of errors. Firstly, we observed that it is more 
difficult to obtain good scores for RNA structures solved by 
NMR. This is likely due to significant differences in the helix 
geometry between X-ray crystal structures, which are used to 
parameterize ESCORE, and NMR models.  

Furthermore, we have shown that the ESCORE does not 
penalize to a sufficient degree the presence of hairpins with 
respect to helices. This problem, affecting ESCORE as well 
as other state-of-the-art, atomistic methods, is an important 
shortcoming that should be addressed properly in the future 
in order to allow for accurate RNA 3D structure predictions.  
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Figure 2. Native structure (left) and best scoring decoy structure 
within the 28SP decoy set. Each residue is colored according to the 
ESCORE. The sum of all per-residue contributions gives the total 
ESCORE value. Note that bases in the stem regions typically have 
high ESCORE values. Conversely, bases in the hairpin and internal 
loop regions have low ESCORE values. Root-mean-square deviation 
(RMSD [23]) from native of the best scoring decoy is also shown. 
 

Figure 3. Native structure (left) and best scoring decoy structure 
within the 1KKA decoy set. Each residue is colored according to 
the ESCORE. Note that the residues in the stem give the dominant 
contribution to the ESCORE. RMSD from native of the best scoring 
decoy is also shown. 
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