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MicroRNAs (miRNAs) are short, noncoding RNAs that silence target messenger RNAs by blocking translation 
or promoting transcript degradation. While the roles of miRNAs within cells have been extensively 
characterized, emerging evidence suggests that miRNAs are also transported between cells, providing a novel 
form of intercellular communication. Circulating miRNAs have been identified, packaged in extracellular 
vesicles or associated with high-density lipoproteins and Argonaute proteins. Specific extracellular miRNAs have 
been associated with human cancers. They not only serve as measurable disease biomarkers, but recent findings 
suggest secreted miRNAs may also mediate crosstalk between cancer cells and other cell types, including those 
that comprise the prometastatic tumor niche. Previous studies, reviewed here, demonstrate that miRNAs 
released by cancer cells can be internalized by nearby or distant cells, to modify gene expression and alter the 
tumor microenvironment. As critical drivers of both oncogenesis and metastasis, miRNAs may be attractive 
therapeutic targets in a wide range of cancers. 
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Introduction 

Short, noncoding RNAs known as microRNAs (miRNAs) 
are endogenous post-transcriptional regulators that play 
active roles in various physiological processes [1-3]. miRNAs 
are 19-24 nucleotides long and act to silence gene expression 
by binding complementary sequences, typically in the 3’ 
untranslated region (UTR) of specific target mRNAs. As a 
consequence of 3’UTR binding, miRNAs may block 
translation or promote transcript degradation through the 
RNA-induced silencing complex (RISC). Previous reports 
have described miRNAs as key drivers of organismal 
development, cell differentiation, and homeostasis.  

While the roles of miRNAs within cells have been 
characterized extensively, recent findings indicate that 

miRNAs can also be transported between cells and thus 
provide an important mode of intercellular communication 
[4]. Indeed, substantial evidence suggests that miRNAs 
secreted by “donor” cells can modify gene expression in 
nearby or distant “recipient” cells. For example, miRNAs can 
be transferred from T cells to antigen-presenting cells 
(APCs) through immune synapses to alter gene expression in 
APCs [5].  Intercellular transfer of miRNAs may also 
contribute to maternal-fetal crosstalk [6-8]. miRNAs released 
by the human placental syncytiotrophoblast enter maternal 
circulation during pregnancy and maternally derived, 
immune-related miRNAs have been identified in breast milk. 
Consistent with a putative role for miRNAs as extracellular 
signaling molecules, researchers have identified numerous 
cell-free miRNAs in body fluids such as serum/plasma [9-11], 
saliva [12], urine [13], semen [14], ascites [15], amniotic fluid [16], 
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bile [17], and cerebrospinal fluid  [18, 19]. 

As the physiological contributions of miRNAs have been 
elucidated, it has become increasingly evident that 
dysregulation of miRNA expression and secretion may 
promote pathological outcomes [4, 20, 21]. Aberrations in levels 
of specific, circulating miRNAs have been noted in 
association with acute myocardial infarction [22-24], diabetes 
[25], sepsis [26, 27], bipolar disorder [28], and a wide range of 
cancers [29]. In some cases, circulating miRNA levels appear 
to correlate with disease status. Remarkable reductions in 
cancer-associated miRNAs have been demonstrated 
following chemotherapy and tumor resection, and 
normalization of plasma miRNAs has been closely correlated 
with improved prognosis and even remission in some 
individuals [18, 30]. 

Conversely, increases in some circulating miRNAs have 
been associated with poor prognosis and disease progression 
in leukemia [31], B-cell lymphoma [32], melanoma [33], 
squamous cell carcinoma [12, 34-37], prostate [38], breast [30, 

39-41], ovarian [42], colorectal [43-45], gastric [46, 47], and lung 
cancers [48-51]. Notably, in vivo experiments have 
demonstrated that overexpression of specific extracellular 
miRNAs, e.g., miR-9, miR-150, miR-200s, miR-210, 
miR-105 enhances oncogenesis, angiogenesis and metastasis 
[52-56]. These data provide compelling evidence that the 
association between miRNA and disease is complex and that 
miRNAs are not simply molecular markers. Rather, in their 
capacity to serve as intercellular signals and potent 
post-transcriptional modifiers, miRNAs may play influential, 
functional roles in the origination and progression of disease.  

Mode of miRNA secretion 

The initial isolation of circulating cell-free miRNA 
presented an intriguing finding, as it was unclear how 
secreted RNAs evaded degradation by serum RNAses. 
However, recent evidence suggests that some miRNAs are 
secreted from cells in lipid-bilayer enclosed vehicles, known 
as extracellular vesicles (EVs) [57-59]. EVs are categorized by 
their mode of biogenesis, with three different types: 
exosomes, microvesicles, and apoptotic bodies [58]. 
Exosomes originate through an endolysosomal pathway, and 
are released from cells when multivesicular bodies (MVBs) 
fuse with the plasma membrane [60]. They range from 40 to 
100 nm in diameter and are enriched with membrane 
tetraspanins (e.g., CD63, CD9, CD81, CD82). Microvesicles, 
produced through the direct outward budding of the plasma 
membrane, are more variable in size (100 nm-1000 nm) and 
are enriched with membrane phsophatidylserine [61]. 
Apoptotic bodies also vary in size, reaching up to 4 µm in 
diameter, but are generated through the fragmentation of 
dying cells. While techniques for effectively purifying and 

differentiating between these EVs are still being developed, 
apoptotic bodies can be distinguished by their contents, 
namely the DNA and histones of dying cells [58, 62].  

Cell-free miRNAs have been identified in all three types 
of EVs [57, 58, 63]. Apoptotic bodies, for example, have been 
shown to mediate the transfer of miRNA between damaged 
endothelial cells and surrounding vascular cells during tissue 
injury [64]. Hundreds of different miRNAs have been isolated 
from the total RNA of purified exosomes [63, 64]. Recently, we 
demonstrated that miRNAs belonging to the miR-200 family 
are secreted by metastatic breast cancer cells in exosomes 
and microvesicles [54]. Not only did we observe a robust 
association between these miRNAs and exosomal marker 
CD63, we also found that RNAse does not degrade cell-free 
miRNAs in the absence of a membrane solubilizing 
detergent, suggesting that secreted miRNAs exist within a 
lipid bilayer.  

miRNA secretion has been most widely studied in the 
context of exosomes. Although exosomes are derived from 
multivesicular bodies, they are not necessarily dependent on 
the endosomal sorting complex required for transport 
(ESCRT) for their secretion [65]. Instead, mechanisms of 
exosomal release have been shown to involve both 
ESCRT-dependent and independent pathways. Exosomal 
release that does not proceed through ESCRT is highly 
associated with intracellular ceramide production and several 
experiments have demonstrated that inhibition of neutral 
sphingomyelinase 2 (nSMase2), an enzyme that catalyzes 
ceramide biosynthesis, precludes exosome secretion [66].  

In addition to nSMase2, Rab27 GTPases, and their 
effector proteins, Slp4 and Slac2b, have also been implicated 
in exosome release [58]. In vivo silencing of Rab27a in breast 
carcinoma cells injected subcutaneously into mice results in 
reduced exosome release, as well as decreased lung 
metastasis, likely due to interruption of exosome-mediated 
spread of tumorigenic miRNAs and proteins [67].  

Apart from EVs, additional mechanisms of miRNA 
secretion have also been described. Previous work has 
demonstrated an association between highly stable, 
exogenous miRNAs and high-density lipoprotein (HDL) [68]. 
Findings suggest that HDL readily interacts with cell-free 
miRNAs and delivers them to cells by binding to scavenger 
receptor class B type I (SR-BI), a class of cell-surface 
receptors that mediates the selective uptake of HDL and 
associated miRNAs. Functional miRNAs may also be 
transferred between cells through gap junctions [69]. 
Circulating miRNAs have also been identified in complexes 
with Argonaute proteins outside EVs and HDLs [70-72]. 
Although these circulating miRNAs are found abundantly in  
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human blood, it remains unclear whether vesicle-free 
circulating miRNAs are targeted to specific cells or are 
capable of intercellular communication.  

miRNAs as biomarkers for cancer 

Many miRNAs exhibit tissue-specific patterns of 
expression [1-3]. Dysregulation of miRNA secretion is 
associated with diverse pathological conditions, including 
diabetes [25], liver disease [73], tissue injury [74], and cancer [11]. 
Accordingly, changes in extracellular miRNA profiles may 
reflect molecular alterations in the cells from which they are 
derived, and therefore provide unique pathological signatures 
that aid in disease diagnosis and inform therapeutic strategy.   

Previous findings suggest that cancer cells release 
specialized EVs, enriched with miRNAs, which are not 
released by non-neoplastic cells [75]. Indeed, cancer patients 
often exhibit elevated levels of specific, circulating miRNA 
species. In some cases, serum miRNA profiles have 
effectively distinguished cancer patients from healthy 
controls with high degrees of accuracy [11, 20]. For example, 
miR-210 [30] and miR-92 [44] are significantly upregulated in 

the sera of patients with breast cancer and colorectal cancer, 
respectively, and the ratio of plasma miR-92a/miR-638 levels 
has been suggested to predict leukemia [31]. Reports from 
different groups suggest a strong relationship between 
upregulated levels of circulating miR-200 family miRNAs 
(miR-200a, miR-200b, miR-200c, miR-141, miR-429) and 
neoplastic malignancy. For example, serum miR-141 is 
elevated in prostate cancer patients, while serum miR-200a 
and miR-200b are elevated in pancreatic cancer patients [38, 

76]. miR-200 family members  are also elevated in the serum 
of malignant ovarian cancer [77], metastatic colorectal cancer 
[78], and metastatic breast cancer patients [79], as well as in the 
cerebrospinal fluid of patients with brain metastases derived 
from primary breast and lung cancers [18]. These data suggest 
that the miR-200 family is a common biomarker for several 
different types of cancers. Additional listing of extracellular 
miRNAs as biomarkers for cancer can be found in Weiland 
et al [20].  

Specific, circulating miRNA signatures may not only 
reflect disease, but also disease status. For example, 
circulating miR-210 levels are significantly reduced in 
Her2-positive breast cancer patients who are clinically 

Table 1. Putative functions of secreted miRNAs in cancer cell signaling 

reted miRNA Donor cell Target cell Gene target Function Reference 

miR-200 family 
(miR-200a, miR-200b, 
miR-200c, miR-141, 
miR-429) 

Metastatic breast 
cancer cells 

Poorly-metastatic breast 
cancer cells 

ZEB2, SEC23a Promote 
mesenchymal-to-epithelial 
transition and metastatic 
colonization of breast cancer 
cells 

[54] 

miR-9 Melanoma, lung and 
colorectal cancer cells  

Microvascular 
endothelial cells 

SOCS5 Promotes endothelial cell 
migration, angiogenesis 

[52] 

miR-17-92 cluster 
(miR-92a) 

Leukemia cells HUVECs  ITGA5 Promote endothelial cell 
migration, angiogenesis 

[84] 

miR-150 Monocytic leukemia 
cells 

Dermal microvascular 
endothelial cells 

C-MYB Enhances cell migration [53] 

miR-409 Prostate stromal 
fibroblasts 

Prostate cancer cells RSU1, STAG2 Promotes 
epithelial-to-mesenchymal 
transition 

[89] 

miR-210 Breast cancer cells HUVECs EFNA3 Angiogenesis [55] 

miR-21, miR-29a Lung carcinoma cells Macrophages Toll-like 
receptors 

Induce prometastatic 
inflammatory response 

[83] 

miR-223 IL-4-activated 
macrophages 

Breast cancer cells MEF2C Enhance breast cancer cell 
invasion 

[85] 

miR-135b Multiple myeloma 
cells 

HUVECs FIH-1 Promotes angiogenesis [90] 

miR-105 Breast cancer cells Mammary epithelial cells ZO-1 Enhances vascular 
permeability, promote 
metastasis 

[56] 

miR-494, miR-542-3p Adenocarcinoma cells Lymph node stroma cells 
and lung fibroblasts 

CDH17 Prepare premetastatic niche [81] 

miR-10b Breast cancer cells Mammary epithelial cells HOXD10, 
KLF4 

Promotes breast cancer cell 
invasiveness 

[91] 

miR-214 Lewis lung carcinoma 
cells 

Regulatory T cells  
 

PTEN Immune suppression, cancer 
immune evasion 

[92] 

miR-1246 Colorectal cancer 
cells 

HUVECs PML Angiogenesis [45] 

miR-221, miR-222 Tamoxifen resistant 
breast cancer cells  

Tamoxifen sensitive 
breast cancer cells  

P27, ERα Tamoxifen resistance [51]  

HUVECs, Human umbilical vein endothelial cells 
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responsive to trastuzumab treatment, but remain elevated in 
patients with residual disease [30].  

In light of the robust association between dysregulation of 
extracellular miRNA and cancer, it appears that quantitation 
of circulating miRNA species can be a powerful tool for 
diagnosing cancer and monitoring disease progression. 
Moreover, circulating miRNAs are good biomarkers because 
they are highly stable and easily detectable, even at low 
levels, using quantitative RT-PCR technology [20]. 
Independent studies by Resnick et al. and Zhu et al. found 
that diagnostic tests that measured circulating miRNA in 
addition to established biomarkers detected cancer with 
greater sensitivity than either miRNA or biomarker 
measurement alone [41, 42]. Importantly, a single, rapid 
procedure is sufficient to accurately measure serum miRNA 
and describe an individual’s miRNA expression profile [20]. 
Conversely, characterization of standard protein biomarkers, 
which are often present in low abundance, is more 
challenging, dependent on antibody availability, susceptible 
to chance variation, and sometimes misleading in cases of 
selective isolation and detection.  

miRNA profiling would be particularly useful in 
diagnosing cancers such as pancreatic cancer and 
glioblastoma, for which current diagnostic procedures are 
highly invasive and existing methods for monitoring disease 
progression (e.g., imaging) are often unreliable [18]. Attempts 
to characterize the blood “miRNome” have supported this 
idea [80]. In a multicenter study that examined the profiles of 
863 different blood-borne miRNAs, Keller and colleagues 
found that extracellular miRNA is consistently abnormal 
across several cancers and other diseases [80]. They also 
found that blood miRNA profiles alone are capable of 
distinguishing diseased from healthy individuals with an 
average accuracy of 88.5%. Taken together, these data 
suggest that incorporating a “liquid biopsy,” or assessment of 
blood-borne nucleic acids, into standard oncological practice 
may enhance screening and diagnosis for a wide range of 
malignant conditions.  

Roles of extracellular miRNAs in cancer intercellular 
communication 

Not only may cell-free miRNAs be informative 
biomarkers for cancer, but they may also play active roles in 
tumor growth and metastasis [52-55, 81, 82]. In vitro and in vivo 
experiments have demonstrated that “donor” cancer cells 
secrete miRNAs packaged in EVs that are internalized by 
nearby or distant “recipient” cells. Remarkably, these 
miRNAs are functional and are capable of reprogramming 
the receiving cells towards a pro-tumorigenic or 
pro-metastatic phenotype (Table 1). Stromal fibroblasts [81], 

endothelial cells [52, 53, 56], immune cells [83], other tumor cells 
[54], and non-neoplastic epithelial cells [82] have all been 
identified as recipients of these tumorigenic RNA species.  

While bioactive miRNAs may be transferred between 
adjacent cells through gap junctions and immune synapses, 
direct cell contact is not a necessary condition for miRNA 
transfer [54, 69, 83]. miRNAs secreted in EVs have been shown 
to travel stably over long distances in the body [4, 21]. Recent 
evidence suggests that precursor miRNAs are packaged in 
exosomes with components of the RISC-loading complex 
(i.e., Dicer, AGO2, and TRBP) and are processed into mature 
miRNAs en route to their recipient target cells [82]. This may 
explain how exosome-bound miRNAs are capable of 
silencing gene expression immediately following 
internalization.  

EV-mediated miRNA transfer represents a novel and 
intriguing form of intercellular communication that many 
cancers appear to have harnessed to promote angiogenesis [52, 

53, 55, 84], generate pro-metastatic inflammatory responses [83], 
confer metastatic potential throughout heterogeneous 
populations of tumor cells [54], and transform non-neoplastic 
epithelial cells into tumor-forming cells [82]. Several reports 
have indicated that miRNAs released by cancer cells act as 
molecular signals to nearby or distant endothelial cells and 
stromal fibroblasts, reprogramming them to promote the 
formation of the tumor microenvironment or premetastatic 
niche [52, 53, 55, 81, 84]. Rana and colleagues demonstrated that 
miRNAs in exosomes derived from metastatic rat 
adenocarcinoma ASML cells are taken up by lymph node 
stroma cells and lung fibroblasts in vivo, enhancing the 
formation of lung metastases. miRNAs released by 
metastatic ASML cells silence regulatory RNAs in stroma 
cells and fibroblasts, resulting in the upregulation of cellular 
metalloproteases and angiogenesis-promoting genes [81].  

Angiogenesis may also be promoted by miR-9, a miRNA 
that is commonly released in EVs from lung, skin or 
colorectal tumor cells, and taken up by tumor-associated 
endothelial cells [52]. Once internalized, miR-9 promotes 
endothelial cell migration and tumor angiogenesis by 
activating the JAK-STAT pathway through downregulation 
of SOCS5. A specific role for miR-9 in pro-angiogenic 
signaling is supported by data demonstrating that tumor 
growth and vasculature are reduced, but apoptosis is 
unaffected, in tumor-bearing mice treated with miR-9 
antagomirs. Similar pro-angiogenic effects are mediated by 
miR-150, which is secreted in EVs from leukemia cells [53]. 
miR-150  downregulates c-Myb expression and enhances 
migration of recipient endothelial cells. c-Myb knowdown 
with siRNA has previously been shown to promote 
endothelial cell migration, suggesting that 
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post-transcriptional regulation of c-Myb by miR-150 might 
contribute to pro-angiogenic changes in endothelial cell 
phenotype. The contributions of secreted miR-150 to 
angiogenesis are further supported by evidence 
demonstrating that changes in cell migration and c-Myb 
observed in endothelial cells cultured with leukemia EVs are 
reversed in the presence of miR-150 antagomirs.   

Similarly, a putative role for exosomes in mediating 
intercellular transfer of pro-metastatic miRNAs is supported 
by findings indicating that loss of nSMase2 activity 
abrogates the ability of cancer cells to promote angiogenesis 
and thereby contribute to metastasis [55, 83]. nSmase2 
silencing in breast cancer cells has been shown to block 
exosome production and reduce pro-angiogenic activity in 
target endothelial cells [55]. This angiogenic potential could 
be restored, however, through exogenous administration of 
cancer exosomes, suggesting that EVs and their functional 
miRNA cargoes influence metastatic capability.  

The leading explanation for how miRNAs exert their 
functions has been attributed to their ability to block 
translation and silence regulatory RNA. However, Fabbri et 
al. recently found that internalized miRNAs might also serve 
as ligands for the Toll-like receptor (TLR) family and act as 
signaling molecules through TLR-mediated cascades [83]. 
They showed that internalized exosomal miRNA can bind 
and activate human and murine TLRs located in cellular 
endosomes, stimulating NF-κB and secretion of cytokines 
TNF-α and IL-6, and suggested that these inflammatory 
responses might enhance tumor growth and metastasis. 
Consistent with this hypothesis, Fabbri et al. also found that 
wild-type mice developed significantly more lung metastases 
than TLR7-/- mice when injected with metastatic Lewis lung 
carcinoma cells. Collectively, these results suggest that 
miRNA activation of TLR-mediated signaling may be an 
important mechanism by which secreted miRNAs promote 
the formation of the pro-metastatic niche and mature tumor 
microenvironment.   

Compelling evidence also suggests that miRNA-mediated 
communication between tumor cells and their local 
environment is bidirectional [58]. Macrophage-derived 
miRNAs have been identified in breast cancer cells, where 
they have been shown to promote tumor cell invasiveness 
through downregulation of the myocyte enhance 
factor/β-catenin pathway [85]. Similarly, CD81-positive 
exosomes secreted by fibroblasts may be internalized by 
breast cancer cells, enhancing cell motility and formation of 
protrusions through activation of Wnt-planar cell polarity 
signaling [86]. While the specific role of fibroblast-derived 
miRNAs has not been examined, it is plausible that they 
might play an important part in conferring metastatic 

properties to tumor cells.  

In addition to modulating interactions between tumors and 
their environment, miRNAs may also be transferred between 
cancer cells, resulting in the propagation of metastatic 
properties throughout heterogeneous populations of tumor 
cells [54]. Recently, we demonstrated that EVs released by 
highly metastatic mouse breast cancer cells are taken up by 
poorly metastatic isogenic cells. Furthermore, we found that 
metastatic cell-derived EVs contain specialized sets of 
miRNAs, the miR-200 family, that increase metastasis of 
recipient tumor cells by activating tumor re-epithelialization 
(mesenchymal-to-epithelial transition, MET) programs. 
These data, recapitulated in culture and in murine breast 
cancer models, suggest that by promoting MET in the 
recipient cells, miR-200 miRNAs enable the colonization of 
distant metastatic sites. Supporting this hypothesis, we found 
that antagonizing miR-200 miRNAs greatly reduced the 
increase in metastasis associated with transfer of EVs 
between these cells. Importantly, these findings were 
validated by similar experiments employing human breast 
cancer cell lines and supported by other studies that showed 
enrichment of circulating miR-200 miRNAs in patients with 
metastatic breast cancer.  

Future directions and challenges 

Accumulating evidence implicates circulating miRNAs as 
critical drivers of oncogenesis and metastasis, suggesting that 
they may be effective therapeutic targets in a wide range of 
cancers. While more research is needed to further elucidate 
mechanisms of miRNA secretion, uptake, and epigenetic 
modification, current findings suggest that blocking miRNA 
transfer between cancer cells and their environment might 
abrogate tumor growth and metastasis. Recently, we showed 
that inhibition of miR-200 transfer in breast cancer cells 
greatly reduced the formation of lung metastases in murine 
breast cancer models [54]. Similarly, Fabbri et al. 
demonstrated that blocking miRNA-induced intercellular 
signaling through Toll-like receptors also has anti-cancer 
effects [83].  

Other therapeutic approaches might target the intercellular 
transfer of miRNAs by preventing the packaging of miRNAs 
in exosomes or inhibiting their secretion by cancer cells. 
Suppression of nSMase2, an enzyme implicated in 
ceramide-dependent exosomal release, has been shown to 
reduce cancer cell metastasis in vivo [83]. Additionally, 
biogenesis of mature extracellular miRNAs may also be 
interrupted by preventing loading of the RISC-loading 
complex (RLC) in exosomes. Future work exploring miRNA 
processing and delivery systems may illuminate key events 
in tumorigenesis and metastasis, as well as the kinetics of 
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miRNA activity in recipient target cells.  

Conversely, mechanisms of intercellular miRNA transfer 
may be reconfigured to deliberately reprogram tumor cells 
and their microenvironment away from a metastatic 
tendency. Given their capacity to carry bioactive cargo and 
their selective uptake by target cells, exosomes may be 
harnessed as novel drug delivery vehicles [57]. Reports have 
demonstrated that miRNAs protected by lipid bilayers 
possess extraordinary stability in circulation. Therefore, it 
seems likely that exosomes could be used to stably deliver 
therapeutic siRNAs to target cells, protecting them from 
degradation by endogenous RNAses [87]. Moreover, 
exosomes are not as toxic as artificial liposome complexes 
and can be delivered to a wide range of cell types [88]. Data 
demonstrating the ability of exosomes to travel long 
distances and even cross the blood brain barrier further 
supports their potential utility as vehicles for drug delivery 
[57].  

Future research should also investigate the putative 
genetic targets of miRNAs released by cancer cells. This 
work will require continued characterization of circulating, 
cancer-associated miRNAs and target prediction using, for 
example, the TargetScan (http://targetscan.org) database [81]. 
Once gene targets are identified, additional studies should 
explore what extracellular levels of circulating miRNAs are 
necessary to transduce intercellular signals, produce gene 
silencing, and confer pathological phenotypes. Target 
identification and description of physiologically relevant 
levels of circulating miRNAs may provide insight into 
factors involved in establishing the pro-metastatic niche, as 
well as critical steps of the invasion-metastasis cascade.  

Comprehensive characterization of miRNAs and other EV 
cargoes will enhance our understanding of intercellular 
signaling in oncogenesis, angiogenesis, and metastasis. As 
secreted miRNAs continue to be described, additional work 
should explore the roles of EV proteins, mRNAs, and 
bioactive lipids in the development of neoplastic malignancy. 
More sophisticated methods of purifying different classes of 
EVs and distinguishing them from cellular debris will also be 
needed to more precisely assess the involvement of apoptotic 
bodies and microvesicles, in addition to exosomes, in 
tumorigenic signaling. 

Our burgeoning understanding of miRNAs, their roles in 
controlling gene expression and, most recently, their part in 
intercellular communication, opens new avenues for 
understanding oncogenesis and developing new therapeutic 
strategies.  Future advances in cancer biology will require 
rigorous and innovative approaches for elucidating the 
protean contributions of these small, but powerful, regulatory 

RNAs. 
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