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Control over the delivery of different functionalities and their synchronized activation in vivo is a challenging 
undertaking that requires careful design and implementation. The goal of the research highlighted herein was to 
develop a platform allowing the simultaneous activation of multiple RNA interference pathways and other 
functionalities inside cells. Our team has developed several RNA, RNA/DNA and DNA/RNA nanoparticles able 
to successfully complete such tasks. The reported designs can potentially be used to target myriad of different 
diseases. 
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Along with DNA and proteins, RNA is one of the three 
major macromolecules that are essential for all known forms 
of life. However, RNA also shares the functional definition 
of DNA (informational storage) and proteins (catalytic, 
structural, transport, and defense). This functional versatility 
makes RNA a perfect material for building biologically 
active and meaningful nanostructures. Consequently, RNA 
nanotechnology has emerged as a significant modality in 
recent years due to the numerous advantages that it offers 
pertaining to precise control over the composition and 
stoichiometry of the delivered RNA-based functionalities as 
well as other functional moieties [1-8].  

RNA interference (RNAi) is the biological process of 
specific gene silencing through a natural cellular 
post-transcriptional regulation process that involves short 
double stranded-RNAs [9-11]. The use of RNAi is showing 
significant potential for various therapeutic applications [12]. 
Simultaneous delivery of multiple therapeutic RNAi inducers 
(siRNAs, miRNAs, shRNAs, etc) to diseased cells is 
expected to have significant synergistic effects[13]. The 

precise controlled delivery of various RNAi-based 
therapeutics could be achieved by building programmable 
RNA scaffolds that can be further functionalized and 
assembled into RNA nanoparticles of various shapes and 
compositions [2,3,14,15]. 

Recently, we introduced a technique that allows the 
conditional activation of RNAi in vivo [16]. The basic idea 
lies in splitting the functional units into non-functional 
fragments, followed by their designed conditional 
re-association and complete restoration of the original 
function. Using this mechanism, we split the functionality of 
Dicer substrate RNAs (DS RNAs) [17] into two RNA-DNA 
hybrids, which when presented together inside the cell, 
recognize each other through toehold interactions embedded 
into the DNA portion of each hybrid, re-associate, and 
release DS RNAs. Cellular Dicer, an RNaseIII-like enzyme, 
is further employed to process DS RNAs into short 
interfering RNAs or siRNAs, which are then utilized by the 
RNA-induced Silencing Complex, called RISC, to activate 
RNAi. In order to deliver and conditionally activate split 
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functionalities such as DS RNAs, FRET, or RNA aptamers, 
the inactive hybrids are decorated with complementary 
ssDNA toeholds that will interact and trigger the 
re-association process when both of the hybrids get close 
together within the same cell.  

By simply elongating the hybrids, we then demonstrated 
the ability to simultaneously activate multiple (up to seven) 

DS RNAs, aptamers and FRET [18,19]. However, this 
approach was limited to the maximum lengths of the 
single-stranded DNA comprising the hybrids; the results 
from re-association of long hybrid double DNAs showed 
some immune-stimulatory effects [19]. To partially overcome 
these problems and to diversify the approach, we designed 
and tested various RNA-DNA and DNA-RNA hybrid 
nanoparticles consisting of either RNA[2,20] or DNA[20] cores 

Figure 1. Application of RNA, RNA/DNA and DNA/RNA for RNAi activation. (a) Schematic representation of the 
assemblies leading to the formation of RNA nanocubes and nanorings functionalized with DS RNAs. (b) Schematic 
representation of the re-association of the RNA/DNA nanocubes and nanorings initiated by toehold interaction and further 
release of the siRNAs from the RNA nanorings. (c) Re-association of DNA/RNA nanocubes and hybrids trigger the release 
of DS RNA further diced into the siRNAs. 
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decorated with six RNA-DNA hybrids (Figure 1). Two 
different previously extensively characterized nanodesigns – 
nanocubes [21,22] and nanorings [23,24] - were used as RNA 
cores (Figure 1a-b). The resulting functional RNA 
nanoparticles can be produced either by one-pot assembly[23] 
or co-transcriptionally [25]. However, due to the limitations of 
the nanoring design strategy [23], only the nanocubes can be 
used as the DNA core in the DNA/RNA nanoparticles and 
only the one-pot assembly protocol is available for their 
production (Figure 1c). The single-stranded DNA toeholds 
appending each nanoparticle were designed to initiate the 
re-association after the addition of the cognate hybrids 
(Figure 1b-c). The regulated displacement of the DNA 
partner induced the assembly of the RNA duplexes, which 
were further processed by the human Dicer enzyme, thus 
activating RNAi. Various experimental results [2,20] revealed 
significant cellular uptake of functionalized nanoparticles 
through endocytosis. Extensive levels of silencing of the 
targeted genes were observed and the silencing remained 
significant throughout the experiment even on the twelfth 
day post-transfection. Results showed that the silencing only 
occurred when the nanoparticles and the cognate hybrids 
were simultaneously delivered into the cells. Overall, the 
comprehensive cell culture experiments demonstrated FRET 
and RNAi activation by conditional triggering of the split 
functionalities in the cells. The use of RNA nanoparticles 
functionalized with six different siRNAs targeting different 
parts of the HIV genome[26] confirmed the successful 
down-regulation of viral production in HIV infected cells. 
Another important result presented in the highlighted 
research [20] revealed that the DNA-RNA nanoconstructs are 
potentially better suited for certain therapeutic purposes due 
to  reduced cytokine release.  

In conclusion, the novel technique highlighted here could 
be used to exploit the multiple existing three-dimensional 
shapes formed by DNAs and RNA-DNA hybrid structures 
[27-32]. 
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