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Here we provide a concise overview of a new platform we recently developed for transactivating endogenous 
genes ad libitum. It relies on a binary design, including an RNA cofactor in charge of recognizing the target 
gene, and a polypeptidic apofactor stimulating transcription. Compared to similar CRISPR-based devices, our 
artificial transactivators are seven-folds smaller and elicit a lower, however robust and biologically effective, 
expression gain. Remarkably, they only work in cells which already transcribe the gene of interest. These 
properties make our novel platform an appealing potential tool for restoring normal expression levels of 
haploinsufficient genes upon generalized delivery. 
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In recent years, several attempts have been made to 
develop new strategies to perturbate endogenous gene 
expression levels. Small activating miRNA/siRNA-like 
RNAs (saRNAs) were demonstrated to be an effective tool to 
achieve this goal [1-5]. On the other hand, artificial enzymes 
able to recognize arbitrarily selected genes and transactivate 
them have been also recently described. They include Zinc 
Finger- (ZF-), TransActivator Like Element- (TALE-) and 
RNA-programmable, Clustered Regularly Interspaced Short 
Palindromic Repeats- (CRISPR-) type transactivators [6-11]. 

In the paper highlighted here [12], we describe a novel, 
small and non-CRISPR transactivator prototype we recently 

developed. It is composed by a polypeptidic moiety, NMHV, 
which stimulates gene transcription, and a non coding RNA 
domain, which drives the whole complex to the gene of 
interest (GOI). NMHV includes two SV40-T protein nuclear 
localization signals (NLS), an RNA binding domain (RBD) 
corresponding to the bacteriophage MS2 coat protein [13], a 
monomeric A influenza virus hemagglutinin epitope (HA) 
and three VP16 transactivating domains from the herpes 
simplex virus 1. In its original formulation, the ncRNA 
co-factor included an hexameric MS2 coat protein 
stem&loop sequence [14, 15] (MF6) and a gene-specific, 
120-180-bases long RNA bait (Figure 1a).   
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We firstly tested this device on HEK293T cells. We 
programmed it to recognize three genes, FMR1, NAP22 and 
NRGN, expressed at high level in this line. When we 
delivered our device to cells, these GOIs were upregulated by 
47%, 83% and 25%, respectively (Figure 1b). Moreover, 
when we challenged cells with the NMHV/MF6-NAP22 pair, 
the NAP22 protein was upregulated by 5.77 folds (Figure 
1c). Interestingly, our transactivator upregulated each GOI in 
a specific way, since neither structurally similar genes nor 
genes flanking the intended transcription unit were affected 
at all. Moreover, chromatin immunoprecipitation assays 
showed that, apparently, RNA polymerase II (RNA polII) 
progression along the transcription unit was facilitated by our 
device.  

To assess the capability of our artificial transactivator to 
elicit an appreciable biological effect, we assayed it on two 
genes exerting a fine control of key neuronogenetic 
parameters, Emx2 and Foxg1. We designed ncRNA 
cofactors targeting Emx2 and Foxg1 loci. We employed a 

monomeric (MF1) version of the original hexameric (MF6) 
ncRNA cofactor, since it resulted more stable in lentiviral 
vectors needed for this assay. We tested our device in murine 
dorsal telencephalic precursors at embryonic day 12.5 
(E12.5). Compared to controls, delivery of NMHV and 
MF1-Emx2 or NMHV and MF1-Foxg1 upregulated the two 
target genes by 16% and 23%, respectively (Figure 2a,d). 
Despite the small expression gain, this led to a pronounced 
reduction of the neuronal output, as suggested by the 
dramatic decrease of cells expressing the early post mitotic 
marker Tubb3 (Figure 2 b,c and e,f). This is not surprising to 
us, since it has been previously demonstrated that even a 
small increase in Emx2 levels robustly promotes pallial 
precursors proliferation and, as a consequence, reduces their 
differentiation to neurons [4, 16, 17].  

Even in Emx2 and Foxg1 cases, no upregulation was 
observed for (1) potential off-target genes sharing extensive 
homologies with the intended target gene, (2) other genes 
active in pallial precursors (and, as such, susceptible to 

Figure 1. Functional evaluation of NMHV transactivators in HEK293T cells. (a) Schematics of the NMHV apo-activator and its RNA 
cofactor. NLS2, nuclear localization signal 2x; RBD, MS2 RNA-binding domain; HA, hemoagglutinin epitope; TAD, VP16-related 
transactivator domain, 3x; MF6, MS2-high affinity, stem-and-loop finger, 6x; "bait", short, target gene specific, RNA tag; GOI, gene of 
interest. (b) mRNA expression gains elicited in HEK293T cells by NMHV enzymes programmed to target FMR1, NAP22 and NRGN. Data 
double-normalized against GAPDH and control-transfected samples. (c) Western blotting of NAP22 in HEK293T cells after transfection by 
NMHV/MF6-NAP22 or CTR (control). 
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exogenous transactivating complexes) as well as (3) genes 
flanking the GOI locus. Interestingly, when we challenged 
precursors derived from regions that did not express Emx2 
and Foxg1 (the rhombospinal tract and mesencephalon, 
respectively), no gene upregulation was elicited at all. This 
suggested that our device might require a chromatin 
conformation “prone” to gene transcription, in order to evoke 
an appreciable gene stimulation. This makes our prototype an 
appealing potential tool for "clean" rescue of gene 
haploinsufficiencies, upon widespread delivery.  

Finally, we worked on NMHV optimization. On one hand 
we tried to ameliorate the the apofactor-cofactor stability. In 
this respect, we observed substantial benefits when we 
increased the number of MS2 coat protein stem&loop 
sequences in the ncRNA cofactor. When we replaced the 
monomeric MF1-Emx2 cofactor with a dimeric MF2-Emx2 
one, Emx2 was upregulated by +40%. Moreover, when we 
modulated the apofactor-cofacto ratio, we further increased 

GOI transactivation.  

On the other hand we validated shorter ncRNA cofactors, 
replacing the original 120-180-bases long baits with 60-mers 
and showing that the latter ones still sustained GOI 
upregulation. Interestingly, when we mutagenized 30% of 
the 60-bases long NAP22 bait, we fully suppressed gene 
upregulation. When the mutagenesis rate was lowered to 
15%, uninterrupted homologous RNA strings of at least 18 
bases were needed to get gene transactivation. 

In summary: (1) we have built an artificial transactivator 
able to specifically stimulate expression of endogenous genes 
ad libitum. By this tool, we upregulated five genes, in cell 
lines as well as in primary cultures of murine pallial 
precursors. (2) Our artificial transactivator specifically 
interacted with target gene chromatin in an RNA 
cofactor-dependent way; however its activity was restricted 
to cells where the target gene is normally transcribed. (3) 

Figure 2. Functional evaluation of NMHV transactivators in murine embryonic neural precursors. (a) mRNA expression gains elicited in 
pallial cells by NMHV enzymes programmed to target Emx2 and Foxg1. Data double-normalized against Gapdh and control-transduced 
samples. (b) Downregulation of the Tubb3+ neuronal differentiating fraction in cultures of pallial precursors transduced with NMHV enzymes 
transactivating Emx2 and Foxg1. ctr, control. (c) Schematics of the murine E10.5 neural tube. cx, cerebral cortex; m, mesencephalon; rs, 
rhombo-spinal tract. (d,e) Unchanged Emx2- and Foxg1-mRNA levels in E10.5 rhombo-spinal and mesencephalic precursors, transduced by 
NMHV/MF2-Emx2 and NMHV/MF1-Foxg1 pairs, repectively. Transactivation of the two genes in E12.5 pallial precursors transduced with the 
same pairs are shown, as positive controls. Data double-normalized against Gapdh and control-transduced samples (CTR). **, p<0.01; ***, 
p<0.001; ****, p<0.0001. 
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Albeit small, gene upregulation was sufficient to inhibit 
neuronal differentiation. (4) High homology between the 
ncRNA bait and the target gene was required to get gene 
transactivation. 
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