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Localized protein expression is crucial for the health and survival of axons and dendrites in a rapidly changing 

environment. This process, however, cannot take place without the precise spatiotemporal localization of the 

cellular translational machinery and of mRNA. mRNA transport and localization requires a variety of 

RNA-binding proteins. Here, we highlight a recent publication which presents evidence for the altered 

localization of the dsRNA-binding protein Staufen1 as a result of Amyotrophic Lateral Sclerosis (ALS) - linked 

mutations, supporting the perception of ALS as a RNA spatiotemporal mislocalization disease. 
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Neurons maintain broad inter-cellular communication 

networks by extending dendrites and axons over long 

distances. However, this highly polarized morphology poses 

a challenge for intra-cellular communication. Thus, the 

neuron requires tightly regulated mechanisms of cellular 

transport, signal transduction and localized protein synthesis. 

A recent publication revealed a possible role for the 

RNA-binding protein Staufen1 in Amyotrophic Lateral 

Sclerosis (ALS), demonstrating both in vitro and in vivo 

alterations in its localization to the synapse [1]. 

The correct spatiotemporal localization of local protein 

synthesis is essential for a neuron’s health and facilitates the 

neuron’s ability to respond to external stimuli in a precise 

spatial and temporal manner. It is a highly regulated event 

that requires the coordination of different processes including 

the transport, targeting, anchoring, and on-site translation of 

mRNA [2]. 

Alterations in RNA localization and local synthesis have 

been associated with neurodegenerative diseases such as 

Amyotrophic Lateral Sclerosis (ALS), Spinal Muscular 

Atrophy (SMA), Huntington’s disease (HD) and others [3, 4]. 

ALS is a progressive neurodegenerative disease that affects 

both upper and lower motor neurons, resulting in a 

phenotype of muscle atrophy that eventually leads to death. 

Research over the past several years has pointed to a growing 

role for RNA metabolism and intracellular transport in ALS, 

with the association of RNA binding proteins TDP-43 and 

FUS/TLS, whose cellular pathology include aggregation into 

cytoplasmic inclusions [5] with the disease. C9ORF72, the 

most prevalent genetic cause for ALS, is not an 

RNA-binding protein, but its pathology includes RNA foci, 

aggregates that include both RNA and RNA-binding proteins 

and hinder RNA splicing, and disrupted nucleocytoplasmic 

transport [6-8].  
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The subcellular localization of mRNAs in eukaryotic cells 

requires the coordination of different processes including the 

transport, targeting, anchoring, and on-site translation of 

mRNA2; these are facilitated in great part by RNA-binding 

proteins (RBPs) that transport and anchor mRNAs as part of 

a RNA-protein (RNP) complex. The RBPs that bind to the 

mRNA have an additional role in maintaining the 

translationally repressed state, until the arrival of a triggering 

signal – such as a guidance cue, or injury [9-11]. This provides 

both spatial and temporal control [2, 3, 9, 12, 13]. RBPs recognize 

and bind mRNAs based on primary sequences, i.e. a 

consensus “zip code” sequence, or secondary sequences in 

the mRNA that target them for transport into subcellular 

compartments [14].  

The cytoskeleton “highways” and motor protein 

“vehicles” are fundamental in maintaining axonal transport, 

whose dysfunction has been linked to various 

neurodegenerative diseases. Indeed, perturbations of the 

retrograde transporting dynein complex are sufficient in 

causing mild, late-onset neurodegeneration [15]. However, 

beyond general slowing and disturbance in both anterograde 

and retrograde transport, the nature of transport can hold 

valuable information as to how transport can contribute to 

the development and progression of neurodegeneration. For 

example, the retrograde transport of pro-survival 

neurotrophic factors to the cell body is significantly inhibited 

in ALS model mice, and replaced with stress-related factors 
[16]. Altogether, this mislocalization renders the axon far 

more vulnerable to environmental stress [16]. Moreover, the 

same perturbations which cause mild neurodegeneration in 

healthy mice have an attenuating effect on disease 

progression in mSOD1 mice [17], further stressing the role of 

the transported cargo in axonal health.  

With this in mind, Gershoni-Emek et al. sought to identify 

proteins whose interaction with the retrograde transport 

motor protein dynein in synaptic fractions may be altered as 

a result of the ALS-linked mutation mSOD1G93A [1]. Mass 

spectrometry (MS) of dynein-immunoprecipitated complexes 

was complemented with bioinformatics network 

reconstruction using the Advanced Network Analysis Tool 

(ANAT) [18], and this highlighted a predicted role for 

dsRNA-binding protein Staufen1 as a central node in dynein 

Figure 1. Suggested model: Dynein switches between a trafficking role and an 
anchoring one as a result of ALS-linked mutations. In the healthy neuron, dynein serves 

to anchor the Staufen1-mRNA complex to a precise synaptic location, possibly enabling local 
synthesis of the tethered mRNA. In the diseased neuron, the Staufen1-RNA complex 
detaches from the synapse and is actively transported retrogradely by dynein away from the 
synapse. The switch between anchor and motor may be a result of the phosphorylative state 
of dynein. This depletion of Staufen1 and mRNA is suggested to increase the neurite’s 
susceptibility to environmental stressors, and to lead to neurodegeneration. 
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interactions with the predicted proteins EIF2AK2 (eukaryotic 

translation initiation factor kinase), PABPC1 (poly 

(A)-binding protein C) and PPP1CA (protein phosphatase A, 

catalytic subunit C), all of which play a part in the regulation 

of gene expression, suggesting a role for dynein-bound 

Staufen1 complexes in translational regulation of local 

expression. One of the proteins identified by MS uniquely in 

the mSOD1 sample was Protein Phosphatase 1, catalytic 

subunit β (PP1B), which was predicted to interact with 

Staufen1 via PP1A. Dynein motility can be modulated by its 

phosphorylation state [19], and PP1B has been shown to 

dephosphorylate cytoplasmic dynein, suggesting it to switch 

dynein between a trafficking and an anchoring mode [20,21]. 

The predicted interaction of Staufen1 and PP1B with 

dynein was subsequently demonstrated in vivo and in vitro, 

and the effect of ALS-linked mutations on their synaptic 

localization and interaction with dynein was studied. A 

decreased synaptic localization of both Staufen1 and PP1B as 

a result of the ALS-linked mutations mSOD1G93A and 

TDP43A315T in vitro was shown, together with a depletion of 

Staufen1 from the neuromuscular junction (NMJ) in vivo in 

the mSOD1G93A mouse model. 

Taken together, Gershoni-Emek et al. suggest a model in 

which under physiological conditions dynein anchors 

Staufen1 together with its bound mRNAs to a precise 

synaptic location, consistent with a previously described 

tethering role for dynein in maintaining synaptic stability [22]. 

This anchored RNA complex at a distinct place provides the 

neuron the ability to respond to alterations in its 

microenvironment. As a result of ALS-linked mutations, 

dynein switches to a trafficking mode, clearing Staufen1 and 

its bound mRNAs from the NMJ, resulting in an increased 

vulnerability of the neuron to stress.  

Staufen1 has a well-described role in spatiotemporal 

localization of mRNA in the D. melanogaster oocyte [23, 24], 

as well as in the formation, transport and anchoring of RNA 

granules in neurons [24, 25]. Staufen1 has been linked to 

numerous neuronal functions, among them neuronal 

plasticity during memory formation [26, 27], as the 

dendritically localized mRNA CamKIIa whose translation is 

activity-dependent, can be found in Staufen1 mRNPs [28]. 

Within neuronal Staufen1 mRNP granules, translational 

repression has recently been suggested to be maintained by 

the inclusion of inhibitory microRNAs together with their 

mRNA targets [29]. In this context, anchoring may be an 

essential step preceding the release from translational 

repression. 

Although Staufen localization in muscles and at the NMJ 

has been previously described [30, 31], Gershoni-Emek and 

colleagues are the first to show alterations in Staufen1 as a 

result of ALS. Previous works have reported an association 

between TDP-43 and Staufen1, suggesting a role for TDP-43 

in shuttling of mRNA between mRNP granules [32]. 

Moreover, an activation-regulated, functionally coordinated 

complex of TDP-43, Staufen1 and FMRP (Fragile X-related 

Mental Retardation Protein) has been shown to play a role in 

neuroprotection [33, 34].  

In order to further examine the role of Staufen1 in axonal 

health and ALS-related neurodegeneration, it would be 

beneficial to characterize the milieu of Staufen1-bound 

mRNAs in axons, and to probe how the spatiotemporal 

localization of these mRNAs is altered as a result of ALS. 

Additionally, it would be interesting to understand how 

Staufen1 is trafficked and localized, and whether it interacts 

directly with dynein. 

  In summary, recent work supports the concept of 

spatiotemporal mislocalization in neurodegeneration [3], and 

provides an exciting new avenue to explore in understanding 

ALS pathology.  
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