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Postmortem molecular analysis of the human brain during development and aging suggests there are epigenetic 
changes reflecting early life experiences. This includes changes in the expression of non-coding RNAs such as 
microRNA. These molecules alter the regulation of gene expression and can interact with underlying genetic risk 
factors, contributing to neurological and neuropsychiatric syndromes such as schizophrenia. Recent evidence 
suggests that these dynamic and influential molecules play an important role in both brain development and the 
cellular response to stress. In our recent studies, we investigate the role of microRNA in the brains’ response to 
maternal immune activation and adolescent cannabinoid exposure, alone and in combination, as both have been 
identified as environmental risk factors for this disorder. We found that combined exposure to significantly 
altered microRNA expression in the left hemisphere of the entorhinal cortex as compared to the right. These 
changes were dominated by a large subgroup of microRNA transcribed from a single imprinted locus on 
chromosome 6q32 that is associated with schizophrenia. These changes correlated with altered gene expression 
in the combined treatment group, with microRNA-gene interactions predicted to regulate neuronal growth and 
differentiation; development of specific cortical layers; synaptic plasticity and transmission; axonogenesis; 
gamma-aminobutyric acid neurotransmitter system; and learning and memory formation. These findings 
suggested that the interaction of both an early and late environmental insult enhances changes in offspring 
microRNA expression in the brain with possible outcomes relevant to neurological disorders in adulthood. 
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Development of the central nervous system (CNS) is a 
complex and ongoing process spanning embryogenesis to 
early adulthood. During this critical period an elaborate 

network of neural connections is established and maintained 
via activity-dependent remodelling. The developmental 
processes that lead to functional synapses and their capacity 
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to undergo activity-dependent remodelling and synaptic 
plasticity are complex, regulated by thousands of proteins 
and involve a combination of genetic and epigenetic 
influences. In humans the dysregulation of these processes 
can lead to problems with neural circuitry which can 
manifest as a range of neurodevelopmental syndromes, such 
as fragile X mental retardation, and psychiatric disorders, 
such as schizophrenia and bipolar disorder. Although there is 
a strong, underlying genetic component, epidemiological 
studies show that exposure to environmental stress 
significantly elevates the risk for developing 
neurodevelopmental disorders such as schizophrenia [1-3]. 
However, the extent and mechanisms by which the 
environment produces these effects in the brain remains 
incompletely understood.  

Studies now indicate an emerging role for microRNA 
(miRNA) in the cellular response to stress, with miRNA 
activation vital to augment CNS recovery from damage in a 
controlled manner [4-6]. These short, non-coding sequences 
are abundant in the human brain and have many diverse and 
important roles in the CNS [7-9]. MiRNA are recognised to 
play a critical role in modifying gene expression by 
repressing translation or inducing mRNA degradation [10]. 
With each miRNA able to modulate the expression of 
hundreds of genes, they are predicted to 
post-transcriptionally regulate ~80% of all protein-coding 
genes and therefore to be involved in all biological processes. 
Environmental insults that can affect miRNA expression 
therefore have the potential to alter numerous processes and 
affect normal brain development. In fact, studies show that 
exposure to environmental stressors can not only bring about 
changes in expression of miRNA involved in the 
development and function of the CNS, it can also alter the 
expression of genes involved in the miRNA biogenesis 
machinery [11-13]. 

However, in order to understand the role of miRNA in the 
response to environmental stress it is first necessary to 
understand their role in gene regulation during 
neurodevelopment. We recently provided the first global 
characterization of both miRNA and mRNA expression at 
various stages in the developing rodent brain. By comparing 
miRNA and gene expression in the mesencephalon, which 
develops relatively early, with the telencephalon, which 
develops later [14], we demonstrated both the temporal and 
regional specificity of miRNA and their target gene 
expression during neurodevelopment [15]. Throughout 
development, 87% of expressed miRNA underwent 
significant changes, with the highest level of change 
occurring during early development (embryonic days (E) 
12-15). MiRNA expression in the telencephalon was 
significantly lower than the mesencephalon at E12 consistent 

with the delayed development of this region. We also 
observed 32 miRNA that were exclusively expressed in the 
telencephalon during early brain development (E12) that had 
predicted functions in neurodevelopmental processes. These 
findings support the concept that the developing brain is 
sensitive to environmental factors at specific developmental 
stages, which can lead to differences in the adult brain as a 
result of altered developmental processes (reviewed by 
Dudley et al., 2011 [16]). 

To further understand the role of miRNA in the 
developing brains’ response to environmental stress, we 
examined the impact of an early and late environmental 
stressor, both alone and in combination, on neural miRNA 
and gene expression in the entorhinal cortex (EC) [17, 18]. This 
brain region is located in the temporal lobe and is vital for 
the mediation of conscious memory [19]. Severe alteration of 
the EC is associated with several disorders of the human 
brain, importantly Alzheimer’s disease, bipolar disorder, 
temporal lobe epilepsy and schizophrenia [20-25]. We 
examined the effects of maternal immune activation (MIA) 
and adolescent cannabinoid exposure (ACE), both of which 
have been documented to be strongly associated with an 
increased risk of developing schizophrenia [3, 26-28] and found 
that the combination of MIA and ACE induced significant 
differences in miRNA expression, whereas only a small 
effect was observed for each treatment alone. Interestingly, 
this effect occurred predominantly in the left hemisphere 
(98%), the same hemisphere primarily altered in 
schizophrenia, and was dominated by a large subgroup of 
miRNA differentially transcribed from a single imprinted 
locus on chromosome 6q32 [18]. In humans, the syntenic 
locus (14q32) encodes a large proportion of miRNAs 
differentially expressed in schizophrenia [29]. Similarly, 
alterations in gene expression occurred primarily in the 
combined MIA-ACE group (99%). MiRNA with altered 
expression in the combined MIA-ACE group were predicted 
to have evolutionary conserved interactions with a large 
proportion of the downregulated genes in this treatment 
group. MiRNA-gene interactions were identified as highly 
enriched in the gamma-aminobutyric acid (GABA) signalling 
pathway, synaptic transmission, transmission of nerve 
impulse and cell-cell signalling, processes repeatedly 
implicated in the pathophysiology of schizophrenia. These 
genes encode proteins with prominent functions in neuronal 
growth and differentiation; development of specific cortical 
layers; synaptic plasticity and transmission; axonogenesis; 
GABA neurotransmitter system; and learning and memory 
formation. These changes in gene and miRNA expression 
corresponded with neuropathological alteration in the 
entorhinal cortex with significant change in radio ligand 
binding to the serotonin 5HT1A receptor in the brains of 
adolescent rats exposed to combined prenatal and postnatal 
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insult. 

These findings indicate that the interaction of both an 
early and late environmental insult can enhance changes in 
offspring miRNA expression in the EC that correlate with 
alterations in gene expression. In response to environmental 
stress, it is highly likely that miRNA play a major role in the 
developmental abnormalities that underlie numerous 
neurological disorders. In particular, abnormalities in the EC 
may contribute to the aberrant behaviours associated with 
these disorders, directly affecting cognitive processes that are 
so often impaired in these conditions. Understanding the 
dynamics that may mediate a person’s predisposition to 
stress-induced neuropathology has major human health 
benefits and is an important area of research. Therefore, by 
linking miRNA to key biological processes related to 
neuropathology in response to environmental stress, we 
provide attractive targets for drug design that may offer an 
alternative to current medications with reduced side effects. 

Conflicting interests 

The authors have declared that no conflict of interests 
exist. 

Acknowledgements 

This study was supported by the Schizophrenia Research 
Institute utilising funding from NSW Health and an M.C. 
Ainsworth Research Fellowship in Epigenetics (MC); and 
Australian Postgraduate Award (SH); a NARSAD Young 
Investigator Award; and an NHMRC project grant 631057.  

Author contributions 

S.L.H. designed experiments, performed the analysis and
wrote the manuscript. F.R.W. designed experiments and 
helped with the analysis. M.J.C. conceived and designed 
experiments, helped with the analysis and co-wrote the 
manuscript. 

Abbreviations 

CNS: central nervous system; miRNA: microRNA; 
mRNA: messenger RNA; E: embryonic days; EC: entorhinal 
cortex; MIA: maternal immune activation; ACE: adolescent 
cannabinoid exposure; GABA: gamma-aminobutyric acid. 

References 

1. Khashan AS, Abel KM, McNamee R, Pedersen MG, Webb RT,
Baker PN, et al. Higher risk of offspring schizophrenia following
antenatal maternal exposure to severe adverse life events. Arch
Gen Psychiatry 2008; 65:146-152.

2. Mednick SA, Huttunen MO, Machón RA. Prenatal influenza
infections and adult schizophrenia. Schizophr Bull 1994;
20:263-267.

3. Brown AS, Derkits EJ. Prenatal infection and schizophrenia: a
review of epidemiologic and translational studies. Am J Psychiatry
2010; 167:261-280.

4. Bhattacharyya SN, Habermacher R, Martine U, Closs EI,
Filipowicz W. Stress-induced reversal of microRNA repression
and mRNA P-body localization in human cells. Cold Spring Harb
Symp Quant Biol 2006; 71:513-521.

5. Uchida S, Nishida A, Hara K, Kamemoto T, Suetsugi M, Fujimoto
M, et al. Characterization of the vulnerability to repeated stress in
Fischer 344 rats: possible involvement of microRNA-mediated
down-regulation of the glucocorticoid receptor. Eur J Neurosci
2008; 27:2250-2261.

6. Meerson A, Cacheaux L, Goosens KA, Sapolsky RM, Soreq H,
Kaufer D. Changes in Brain MicroRNAs Contribute to
Cholinergic Stress Reactions. J Mol Neurosci Humana Press Inc
2010; 40:47-55.

7. Maiorano NA, Mallamaci A. Promotion of embryonic
cortico-cerebral neuronogenesis by miR-124. Neural Dev 2009;
4:1-16.

8. Sempere LF, Freemantle S, Pitha-Rowe I, Moss E, Dmitrovsky E,
Ambros V. Expression profiling of mammalian microRNAs
uncovers a subset of brain-expressed microRNAs with possible
roles in murine and human neuronal differentiation. Genome Biol
2004; 5:R13.

9. Schratt GM, Tuebing F, Nigh EA, Kane CG, Sabatini ME, Kiebler
M, et al. A brain-specific microRNA regulates dendritic spine
development. Nature 2006; 439:283-289.

10. Carroll AP, Tooney PA, Cairns MJ. Context-specific microRNA
function in developmental complexity. J Mol Cell Biol 2013;
5:73-84.

11. Uchida S, Hara K, Kobayashi A, Funato H, Hobara T, Otsuki K, et
al. Early Life Stress Enhances Behavioral Vulnerability to Stress
through the Activation of REST4-Mediated Gene Transcription in
the Medial Prefrontal Cortex of Rodents. J Neurosci 2010;
30:15007-15018.

12. Conaco C, Otto S, Han J-J, Mandel G. Reciprocal actions of REST
and a microRNA promote neuronal identity. PNAS 2006;
103:2422-2427.

13. Wiesen JL, Tomasi TB. Dicer is regulated by cellular stresses and
interferons. Mol Immunol 2009; 46:1222-1228.

14. Rice D, Barone, Jr S. Critical Periods of Vulnerability for the
Developing Nervous System: Evidence from Humans and Animal
Models. Environ Health Perspect 2000; 108:511-533.

15. Hollins SL, Goldie BJ, Carroll AP, Mason EA, Walker FR, Eyles
DW, et al. Ontogeny of small RNA in the regulation of
mammalian brain development. BMC Genomics 2014; 15:777.

16. Dudley KJ, Li X, Kobor MS, Kippin TE, Bredy TW. Epigenetic
mechanisms mediating vulnerability and resilience to psychiatric
disorders. Neurosci Biobehav Rev 2011; 35:1544-1551.

17. Hollins SL, Zavitsanou K, Walker FR, Cairns MJ. Alteration of
transcriptional networks in the entorhinal cortex after maternal
immune activation and adolescent cannabinoid exposure. Brain
Behav Immun 2016; 56:187-196.



RNA & DISEASE 2017; 4: e1382. doi: 10.14800/rd.1382; © 2017 by Sharon L. Hollins, et al. 
http://www.smartscitech.com/index.php/rd 

Page 4 of 4 

18. Hollins SL, Zavitsanou K, Walker FR, Cairns MJ. Alteration of
imprinted Dlk1-Dio3 miRNA cluster expression in the entorhinal
cortex induced by maternal immune activation and adolescent
cannabinoid exposure. Transl Psychiatry 2014; 4:e452.

19. Insausti R, Tunon T, Sobreviela T, Insausti AM, Gonzalo L. The
human entorhinal cortex: a cytoarchitectonic analysis. J Comp
Neurol 1995; 355:171-198.

20. Di Paola M, Macaluso E, Carlesimo G a, Tomaiuolo F, Worsley
KJ, Fadda L, et al. Episodic memory impairment in patients with
Alzheimer’s disease is correlated with entorhinal cortex atrophy.
A voxel-based morphometry study. J Neurol 2007; 254:774-781.

21. Arnold SE, Hyman B, Van Hoesen G, Damasio A. Some
cytoarchitectural abnormalities of the entorhinal cortex in
schizophrenia. Arch Gen Psychiatry 1991; 48:625-632.

22. Pantazopoulos H, Lange N, Baldessarini RJ, Berretta S.
Parvalbumin neurons in the entorhinal cortex of subjects
diagnosed with bipolar disorder or schizophrenia. Biol Psychiatry
2007; 61:640-652.

23. Khan U a, Liu L, Provenzano F a, Berman DE, Profaci CP, Sloan
R, et al. Molecular drivers and cortical spread of lateral entorhinal
cortex dysfunction in preclinical Alzheimer’s disease. Nat
Neurosci 2014; 17:304-311.

24. Thangavel R, Kempuraj D, Stolmeier D, Anantharam P, Khan M,
Zaheer A. Glia maturation factor expression in entorhinal cortex
of Alzheimer’s disease brain. Neurochem Res 2013;
38:1777-1784.

25. Prasad KMR, Patel AR, Muddasani S, Sweeney J, Keshavan MS.
The entorhinal cortex in first-episode psychotic disorders: a
structural magnetic resonance imaging study. Am J Psychiatry
2004; 161:1612-1619.

26. Henquet C, Murray R, Linszen D, van Os J. The environment and
schizophrenia: the role of cannabis use. Schizophr Bull 2005;
31:608-612.

27. Moore THM, Zammit S, Lingford-Hughes A, Barnes TRE, Jones
PB, Burke M, et al. Cannabis use and risk of psychotic or affective
mental health outcomes: a systematic review. Lancet 2007;
370:319-328.

28. Brown AS. The environment and susceptibility to schizophrenia.
Prog Neurobiol 2011; 93:23-58.

29. Gardiner E, Beveridge NJ, Wu JQ, Carr V, Scott RJ, Tooney PA,
et al. Imprinted DLK1-DIO3 region of 14q32 defines a
schizophrenia-associated miRNA signature in peripheral blood
mononuclear cells. Mol Psychiatry 2012; 17:827-840.


	Sharon L. Hollins1,2, Frederick R. Walker1,2, Murray J. Cairns1,2,3

