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Gastric cancer (GC) is one of the most prevalent cancers worldwide, with more than 700,000 cases of death 
annually. Histopathologically, GC can be classified into two main subtypes, the intestinal and diffuse type GC. 
These two subtypes differ not only in histological parameters, but also show distinct profiles of gene alterations. 
In this research highlight, we provide a summary of molecular mechanisms underlying tumor cell behavior in 
both the intestinal and diffuse type GC, and also highlight our recent findings on the roles of gelsolin, an 
actin-regulating protein, in GC dissemination. We recently found that gelsolin is differentially expressed in 
intestinal and diffuse type GC, and uncovered its involvement in the HGF/c-Met oncogenic pathway, which is a 
frequently activated signaling pathway in GC dissemination. Other roles of gelsolin in cancer development are 
also discussed, with a focus on its association with oncogenic pathways and gene alterations in cancer metastasis. 
Our work provides a potential link between gelsolin and pro-invasive pathways in GC, and hence suggests 
avenues for combating GC dissemination and metastasis with consideration of gelsolin status in tumor. 
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Introduction to Gastric Cancer 

Gastric cancer (GC) remains one of the world’s most 
common cancer types, and is more prevalent in men than in 
women across various countries [1]. Although its occurrence 

has decreased over the years, it is still a leading cause of 
oncologic deaths, with over 700,000 deaths annually 
worldwide based on GLOBOCAN in 2012 [1, 2]. 
Significantly, Helicobacter Pylori (H. pylori) infection, 
which is a major risk factor of GC, accounts for 70 percent of 
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GC occurring in developing countries [3]. The mechanisms of 
H. pylori-induced gastric transformation include the evasion
of host defense, enhanced inflammatory and immune
responses, activation of signaling pathways such as nuclear
factor-kappa B (NF-κB) and Wnt/β-catenin, and perturbation
of metal ions [4]. Following sustained infection, non-atrophic
gastritis first develops into multifocal atrophic gastritis
without metaplasia, then into metaplasia and dysplasia [5, 6].
Moreover, GC also has a direct correlation with the
consumption of tobacco, alcohol and a diet rich in starch but
poor in protein quality, fruits and vegetables [7].

Most GC are adenocarcinomas arising from gastric 
epithelium while other less common types include sarcoma, 
lymphoma and carcinoids. Common sites of gastric 
adenocarcinomas include gastric cardia, antrum, and body of 
the stomach [8]. According to Lauren classification, there are 
two main histologic subtypes of adenocarcinoma: intestinal 
and diffuse type [9]. The intestinal type GC displays 
well-differentiated tubular or glandular structure, and 
characteristically forms either an ulcerated tumor or an 
exophytic mass. In contrast, the diffuse type GC presents 
undifferentiated or poorly differentiated glandular structures 
with infiltration of neoplastic cells into mucosa or gastric 
wall.  

In general, GC development is associated with multiple 
genetic alterations [10, 11] (Table 1) , which contribute to 
genomic instability and hence promote tumorigenesis. These 
alterations could be classified into mutations in tumor 
suppressor genes (Adenomatous polyposis coli (APC) and 
p53 [12, 13]), oncogenes (c-Myc and K-ras), growth factor 
signaling (Hepatocyte Growth Factor (HGF) [14, 15] and 
Epidermal Growth Factor (EGF) [16], cell-cycle regulators 
(cyclin E [17]), cell adhesion and metastatic-related genes 
(E-cadherin [18] for instance), DNA-repair genes and 
epigenetic factors [19, 20]. Among these mutations, several 
mutations such as p53 and Hepatocyte growth factor/ 
hepatocyte growth factor receptor (HGF/c-MET) [11] can be 
commonly found in both intestinal type and diffuse type GC. 
On the other hand, the two subtypes of GC also exhibit 
distinct mutations, giving rise to different genetic 
backgrounds. It is observed that intestinal type GC generally 
displays molecular signatures represented by enhanced 
cellular growth whereas in the diffuse type GC, gene clusters 
of cellular and extracellular matrix (ECM), adhesion, 
interaction and migration, immune response and several 
metabolism pathways are observed to be more up-regulated 
[21, 22]. In particular, diffuse type GC has shown to be highly 
associated with the loss of E-cadherin function, arising from 
CDH1 gene mutations [20], while the intestinal type GC is 
associated with other genetic abnormalities including 
mutations in APC and β-catenin (CTNNB1) [21, 23], a protein 

that binds to both E-cadherin and APC protein. 

Apart from the above mentioned genes, our laboratory has 
recently discovered that gelsolin, an important actin 
regulator, is also differentially expressed in these two 
subtypes of GC [24]. 

Gelsolin in cancer 

Gelsolin, and its other family members, are important 
actin-regulating proteins which regulate actin dynamics and 
are essential in many biological events such as motility, 
adhesion, secretion, and cell death [25]. The conventional role 
of gelsolin involves the regulation of actin filament turnover 
via the severing and capping processes, which are further 
regulated by several secondary messengers such as calcium 
and phosphatidylinositol 4,5-biphosphate (PIP2) [25]. In 
addition, there are accumulating evidences suggesting 
gelsolin’s involvement in pathological conditions including 
cancer.  

In cancer, the expression levels of gelsolin appear to be 
affected by the types of cancer and cancer cell behavior. 
Gelsolin has been shown to be down-regulated in several 
types of cancer, including breast [26], prostate [27], ovarian [28], 
and bladder cancers [29]. In contrast, parallel studies reported 
that increased gelsolin levels correlate with aggressive tumor 
behavior in some types of cancer such as non-small cell lung 
cancer [30, 31], oral cancer [32], cervical cancer [33], pancreatic 
cancer [34], urothelial tumor [35], hepatocellular carcinoma [36], 
and renal cell carcinoma [37]. In these studies, expression of 
gelsolin frequently correlates with poor prognosis such as 
reduced disease-free survival, and aggressive tumor behavior 
like metastasis and lymphatic invasion. One hypothesis that 
can explain the discrepancy of gelsolin expression in cancers 
is that gelsolin is down-regulated at early stages of 
tumorigenesis, but it is re-expressed as the tumor progresses 
and its expression contributes to the aggressiveness of 
cancer. This hypothesis is supported from studies in 
urothelial carcinoma and oral cancer [32, 35]. However, 
whether this hypothesis applies to specific types of cancer or 
is a general phenomenon in cancers still needs to be tested. 
These contradicting observations of gelsolin expression 
suggest complex regulation and roles of gelsolin in cancer 
progression, and the need to investigate its functions in 
tumors with different genetic backgrounds.  

A number of in vitro and in vivo studies have 
demonstrated that gelsolin is a critical factor in cancer cell 
migration and invasion, which are crucial steps in metastasis. 
Knockdown of gelsolin counteracts the invasive capacity of a 
panel of cancer cell lines including breast [38], cervical [38], 
pancreatic [34],  colorectal [39 ,  40 ],  melanoma [39],  and 
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Table 1. A brief summary of genetic alterations in diffuse type and intestinal type GC 

GENETIC ALTERATIONS 

INCIDENCE 

DIFFUSE TYPE 

(%) 

INTESTINALTYPE 

(%) 

Tumor Suppressor 
Genes 

Adenomatous polyposis coli (APC) Mutation[85] 13.2 33.3 

Deleted in colorectal cancer (DCC) LOH[86] 43.8 37.5 

Runt-related transcription factor 3 (RUNX3) Reduced/Loss of Expression[87] 17.4 80.8 

p53 
Mutation[88] 4.2^ 41.0^ 

Overexpression[89] 46.4 44.0 

Oncogene 
c-Myc Overexpression[90] 19.0 9.1 

K-ras Mutation[91] 9.1 8.5 

Growth Factors & 
Receptors 

Hepatocyte Growth Factor Receptor 
(HGFR/c-MET) Overexpression[92] 61.4 33.8 

Epidermal Growth Factor Receptor 2 
(HER2/c-erbB-2) 

Gene amplification[92] 1.8 23.0 

Overexpression[92] 3.5 26.8 

Fibroblast Growth Factor Receptor2 
(FGFR2/K-sam) Overexpression[93, 94] 4.5 - 37.0 2.1 - 19.0 

Vascular endothelial growth factor (VEGF) Overexpression[95] 42.9 68.9 

Cell Cycle & 
Apoptotic related 
proteins 

Cyclin D1 Overexpression[96] 35.2 52.6 

Cyclin E2 Overexpression[96] 8.8 13.1 

B-cell lymphoma 2 (Bcl-2) 
LOH[97] 0 36.0 

Overexpression[98-100] 11-25 15.7-71.2 

Cellular Matrix 
related proteins 

E-cadherin (CDH1) 

Aberrant Expression*[101] 72.5 33.3 

LOH, Mutation, Epigenetic 
Alteration[102] 

38.4 

(52.6) 

27.5 

(30.2) 

β-catenin (CTNNB1) 
Mutation[23, 103] 0-38 23-26.9 

Aberrant Expression*[101] 70.0 31.5 

Matrix metalloproteinase 1 (MMP-1) Overexpression[104] 55.6 82.9 

Matrix metalloproteinase 9 (MMP-9) Overexpression[104] 63.0 87.2 

Tumor Associated 
Proteases 

Urokinase-type plasminogen activator (uPA) Overexpression[105] 33.3 65.3 

Urokinase-type plasminogen activator 
Receptor (uPAR) Overexpression[105, 106] 50.0 - 60.0 52.3 - 75.5 

^ Include Early and Advanced Gastric Cancer. ( ) Familial Cases Gastric Cancer- Hereditary diffuse gastric cancer (HDGC) and Familial 
intestinal gastric cancer (FIGC). *Aberrant refers to loss of membranous expression, including those with absent, heterogeneous or 
cytoplasmic staining patterns 

hepatocellular carcinoma cells [36], while overexpression of 
gelsolin enhances the migration and invasiveness of many 
cancer cells [36, 39, 40]. Interestingly, we previously found that 
gelsolin is up-regulated in metastatic variants of HCT116 
colorectal cancer cells [40], and the distribution of gelsolin 

shows a peripheral localization with F-actin in an invasive 
variant of LS180 colon adenocarcinoma cells in a previous 
report [41], suggesting that the localization and proper 
function of gelsolin might be important for its 
invasion-related effects. Due to its pro-invasive roles, 
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gelsolin can be suppressed by tumor suppressors to 
counteract metastasis. Such down-regulation of gelsolin has 
been demonstrated in Nm23-H1-mediated metastatic 
suppression in breast cancer [42]. Controversially, there is a 
study showing that gelsolin could inhibit invasion of bladder 
cancer cells with activating transcription factor 3 (ATF3) 
knockdown background [43]. The reason for such discrepancy 
is unknown at the moment, but it might be due to different 
genetic backgrounds of different cancer types. 

Gelsolin expression in GC subtypes 

In line with the well-established pro-migratory and 
pro-invasive roles of gelsolin, our recent study reported a 
crucial role of gelsolin in promoting GC dissemination. 
Compared to intestinal type GC, we have shown that gelsolin 
is up-regulated in the diffuse type GC, which is characterized 
by cancer cell infiltration [24]. Gelsolin expression is also 
higher in lymph node metastases compared to their primary 
intestinal tumors. Our observation suggests that gelsolin is 
up-regulated in a subset of GC, and contributes to the 
aggressiveness of cancer, in terms of dissemination and 
invasion. 

Gelsolin and E-cadherin in GC 

E-cadherin is a classical Type I cadherin protein and is 
essential in the maintenance and modulation of intracellular 
cadherin-mediated cell-cell adhesion, signaling and 
cytoskeleton organization [44]. E-cadherin has been shown to 
possess tumor suppressive properties where the repression of 
E-cadherin expression serves as a key event in initiating 
epithelial–mesenchymal transition (EMT) [45]. This 
subsequently results in the disruption of the cellular adhesion 
dynamics and acquisition of a phenotype with increased 
migratory and invasive capabilities arising from a wide range 
of transcriptional and functional changes [46]. In GC, loss of 
E-cadherin function has been reported especially in 
diffuse-type GC, and the loss of E-cadherin has been 
associated with poorer differentiation, increased motility, 
invasion and metastatic potential [47-49]. This loss of 
E-cadherin can be attributed to epigenetic and genetic 
modifications including promoter methylation of CDH1 gene 
[50], loss of heterozygosity (LOH) [51], inactivating germline 
and somatic mutations [18, 52]. Besides genetic alterations, 
alternative mechanisms can inhibit E-cadherin activity in 
cancer by reducing E-cadherin expression through processes 
like increased endocytosis [53], proteolytic processing of 
E-cadherin [54], and activation of its transcriptional repressors 
[55]. As summarized (Table 1), the alteration of the 
E-cadherin gene is observed in about one third of GC, while 
the aberrant function or expression of E-cadherin have been 

reported in the majority of diffuse type GC. Therefore, 
non-genetic regulation could play an important role in 
E-cadherin expression and function in GC. 

In our study, we identified an alternative pathway leading 
to E-cadherin repression, which involves gelsolin and its 
downstream pathways. We reported that gelsolin expression 
correlated negatively with wild-type E-cadherin in three 
cohorts of GC patients, and was shown to suppress the 
expression of E-cadherin at both mRNA and protein levels in 
a panel of human GC cell lines. Concurrently, several 
E-cadherin transcriptional repressors, including Snail, 
Twist1, and Zeb2, are up-regulated by gelsolin, which are 
consistent with the decreased levels of E-cadherin observed. 
Changes in mRNA levels of E-cadherin and its repressors 
were also observed in our study upon the knockdown of 
gelsolin in GC.  

Our observations on transcriptional changes after altering 
gelsolin levels suggest that gelsolin might have the ability to 
regulate mRNA changes and possibly gene transcription. 
Although it has not been reported to have DNA binding sites, 
gelsolin has been observed to be a transcriptional 
co-activator and participate in the regulation of gene 
expression [56, 57]. Gelsolin was shown to interact with 
androgen receptor (AR), which leads to the nuclear 
translocation and enhanced transcriptional activity of AR [56]. 
Likewise, gelsolin has also been shown to interact with 
thyroid hormone receptor β and Hypoxia-inducible-factor-1α 
(HIF-1α), which might lead to the regulation of their 
transcriptional activities [57, 58]. More recently, gelsolin was 
suggested to be a crucial factor in mediating the assembly 
and/or stability of estrogen receptor β complexes in the 
nucleus [59]. These findings suggest gelsolin act as a 
transcriptional co-activator of several transcription factors. In 
support of this, there has been mounting evidences showing 
that modulation of gelsolin levels leads to alterations in the 
mRNA levels of several genes, such as urokinase-type 
plasminogen activator (uPA) [40]. Although changes in 
mRNA levels of E-cadherin and several genes were observed 
after silencing gelsolin in GC, the mechanisms of how 
gelsolin regulates these changes are still unknown at the 
moment.  

Furthermore, as E-cadherin is a master regulator of EMT 
as mentioned previously, our findings also suggest that 
gelsolin might play a role in EMT in GC. The influence of 
geslolin on EMT has been suggested in other types of cancer. 
In cervical cancer, knockdown of gelsolin up-regulated 
epithelial markers such as E-cadherin while down-regulating 
mesenchymal markers such as vimentin, and ECM-degrading 
enzymes including matrix metalloproteinase (MMP)-2 and -9 
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[33]. The suppressive effect of gelsolin on E-cadherin 
expression has also been observed in cardiomyocytes [60]. 
More recently, gelsolin is suggested to play a role in 
Transforming Growth Factor (TGF)-β1 induced EMT 
changes [61], where gelsolin is found to be epigenetically 
up-regulated upon TGF-β1 treatment in breast cancer cells, 
together with decreased epithelial marker E-cadherin and 
increased mesenchymal markers including N-cadherin and 
vimentin. Overexpression of gelsolin effectively increases 
vimentin while knockdown of gelsolin reverses this effect. 

Together with these evidences, our study points out the 
possible involvement of gelsolin in EMT in GC, which could 
eventually contribute to metastasis. Moreover, as mentioned 
above, there are evidences suggesting that gelsolin could act 
as a transcriptional co-factor of AR and hence, it is possible 
that gelsolin may also act in similar ways to be co-activators 
of transcription factors regulating E-cadherin and 
EMT-related gene expression. Future studies may be 
conducted to address the potential roles of gelsolin as a 

transcriptional regulator to promote GC dissemination. 

Gelsolin and HGF/c-MET pathway signaling in GC 

The HGF/c-MET pathway has been shown to be essential 
in facilitating cancer progression in GC as well as other types 
of cancer, whereby the aberrant activation of c-MET can 
promote tumor growth and increase both invasiveness and 
metastatic potential through several downstream signaling 
pathways. These changes include activation of Signal 
transducer and activator of transcription 3 (STAT3), 
mitogen-activated protein kinase/ extracellular signal–
regulated kinase (MAPK/ERK),
phosphatidylinositol-4,5-bisphosphate 3-kinase/protein 
kinase B (PI3K/Akt), and HIF-1α-induced activity [62-65]. 
Furthermore, HGF signaling was also shown to modulate 
functional E-cadherin, a master regulator of EMT, possibly 
contributing to the increased invasive capabilities of GC [66]. 
In GC, hyperactivation of HGF/c-MET can be attributed to 
the genetic amplification of the proto-oncogene c-MET and 
the increase in both autocrine and paracrine secretion of HGF 

by stroma cells in tumor microenvironment [67-69]. 
Downstream activation of these signaling networks can result 
in increases in cellular proliferation and survival, motility 
and scattering, matrix degradation and infiltration of tissues, 
and stimulation of angiogenesis [62, 63, 70], thereby 
contributing to HGF-mediated tumor progression and EMT.  

Our recent study has identified that gelsolin modulates 
HGF/c-MET activation and its downstream effects. We have 
shown that HGF treatment increases expression levels of 
gelsolin, and that gelsolin modulates the HGF-induced 
scattering of GC cells, PI3K/Akt pathway activation, and 
subsequent gene expression. Our study has revealed a novel 

Figure 1. A summary of gelsolin in cancer invasion and metastasis. 
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role of gelsolin in mediating HGF/c-MET-induced scattering. 
In line with our observations, villin, a gelsolin family 
member, has also been suggested to modulate HGF-induced 
scattering [71]. Previous reports have also identified the roles 
of gelsolin in modulating cellular responses and downstream 
effects of other secreted growth factors, including 
neuroendocrine factor in neurotensin-induced invasion of 
prostate cancer cell and EGF in EGF-induced motility and 
invasion [72-74]. Taken together, our observations and other 
studies highlight the role of gelsolin in invasion triggered by 
growth factors. It might therefore be important to consider 
gelsolin status in HGF/c-MET targeted therapy and probably 
other therapies targeting growth factors which could be 
influenced by gelsolin. 

Gelsolin and PI3K/Akt pathway in GC 

PI3K/Akt pathway, which can be activated downstream of 
HGF/c-MET and other growth receptors, is critical for 
tumorigenesis, survival and metastasis in GC [75] where the 
increase in PI3K/Akt activity enhances metastasis and 
correlates with poorer prognosis of GC patients. The 
increased PI3K/Akt activity can be attributed to the 
amplification of phosphatidylinositol-4,5-bisphosphate 
3-kinase, catalytic subunit alpha (PIK3CA) [76, 77], elevated 
level of Akt/p-Akt [78, 79], as well as genetic and epigenetic 
alterations of phosphatase and tensin homolog (PTEN) [80]. 
Targeted inhibition of PI3K/Akt, such as through small 
molecules, has been shown to result in the inhibition of 
proliferative and metastatic capabilities of GC [81]. 

Our study also reveals the involvement of gelsolin in 
activating the PI3K/Akt pathway to enhance HGF-induced 
E-cadherin repression and up-regulation of its repressors. 
Using proximity ligation assay, we have uncovered that 
gelsolin could interact with PI3K, which might contribute to 
its effect on PI3K/Akt activation. Consistent with our 
findings, gelsolin has been found to be a binding partner of 
PI3K and other members of podosome signaling complex 
[82]. The interaction between gelsolin and PI3K could lead to 
enhanced activity of PI3K [83], highlighting the role of 
gelsolin in recruitment and activation of signaling molecules. 
Furthermore, gelsolin-mediated invasion is dependent on 
Ras-PI3K-Rac signaling [84]. Taking together, the above 
mentioned studies suggest a potential involvement of 
gelsolin in PI3K oncogenic signaling pathway and its 
importance in gastric carcinogenesis and metastasis. 

Conclusion 

In conclusion, GC is characterized by multiple genetic 
alterations, including mutations and activation of oncogenic 

pathways like HGF/c-MET and PI3K/Akt. One of the 
consequences of those alterations is enhanced or acquired 
capacity of GC cells to invade and metastasize. Gelsolin has 
been shown to regulate invasion and metastasis in several 
types of cancer, which involves the alteration of signaling 
pathways and gene expression (Figure 1). Recent findings 
from our laboratory have shown that gelsolin modulates the 
HGF/c-MET response and PI3K/Akt activation, leading to 
suppression of E-cadherin, which in turn promotes the 
dissemination and metastasis of GC. Our observation 
provides a potential link between gelsolin and pro-invasive 
pathways, and hence a more in-depth look into gelsolin 
expression status in gastric cancer might provide another 
avenue for combating GC dissemination and metastasis. 
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