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It has been conclusively proven that physical activity exerts beneficial effects on individual health. However, 
endurance activities in susceptible individuals can increase the risk of concerning cardiovascular conditions such 
as ventricular hypertrophy or arrhythmia. This increased risk can be attributed to a cardiac remodeling process 
specifically associated with endurance sports. In recent years, microRNAs (miRNAs) have been postulated to 
play many roles in health and disease. In the heart miRNAs regulate electrical remodeling, cardiac dilatation, 
fibrosis, calcium handling, heart failure, atrial fibrillation and autonomic tone in myocardial infarction. A 
growing body of evidence suggests that miRNAs also regulate endurance sports induced remodeling of the heart. 
Since miRNAs circulate in the blood they have a potential role as biomarkers in athletes indicating the degree of 
remodeling and predicting the risk of progression to an overt disease state. 
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Introduction 

MicroRNAs (miRNAs) are endogenous small non-coding 
RNA-sequences (~22 nucleotides long) that regulate 
post-transcriptional gene-expression and play important roles 
in many biological processes. Since their first discovery in 
Caenorhabditis elegans in 1993, miRNAs have been found 
to exist in almost all organisms and are largely conserved 
across species [1, 2]. The biogenesis of miRNAs starts when 
long primary miRNAs (pri-miRNAs) are transcribed in the 
cell nucleus and are folded into “stem-loop”-like structures. 
The splicing enzyme Drosha cleaves these pri-miRNAs into 

small hairpin-shaped precursor miRNAs (pre-miRNAs, ~70 
nucleotides), which are then exported to the cytoplasm by 
Exportin-5 and are further cleaved by Dicer into mature 
miRNAs [3]. Mature miRNAs interact with the RNA-induced 
silencing complex (RISC) to form the miRNA-RISC 
complex, which binds to the specific complementary 
sequence of their targeted mRNAs in the 3’-untranslated 
region [4]. MiRNAs regulate targeted mRNA expression at 
the post-transcriptional stage by one of two methods. 
Imperfect complementary binding leads to inhibition of 
translation while perfect complementary binding leads to 
mRNA degradation. 
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In humans, over 2000 miRNAs are predicted to be present 
in the genome [5]. Extensive studies have established their 
importance in the healthy and diseased states of many 
organs, including the heart. MiRNAs regulate cardiac 
remodeling processes and are involved in the 
pathophysiology of coronary heart disease, myocardial 
infarction (MI), heart failure (HF) and atrial fibrillation (AF) 
[5, 6]. Dysregulation of miRNA expression is highly correlated 
with pathological cardiac conditions such as fibrosis and 
arrhythmias in both clinical settings and animal models [7, 8], 
which implicates them as potential therapeutic targets. 
Recently, reliable measurement of circulating miRNA levels 
in blood samples has led to the emergence of miRNAs as 
novel biomarkers for cardiovascular disease [9, 10]. 

In this review, our focus is to summarize the current 
knowledge about miRNA-mediated cardiac remodeling in 
athletes, and their potential impact as circulating biomarkers. 

Cardiac remodeling in athletes 

Physical training by athletes may impose different 
hemodynamic loads on the heart, depending upon the type of 
activity. Endurance athletes engage in isotonic or aerobic 
activities such as running, swimming or cycling. Resistance 
athletes participate in isometric or anaerobic activities such 
as weightlifting. At extremes of exertion there is likely to be 
overlap between the two categories, while some activities 
such as rowing have inherent overlap [11]. Prolonged 
exposure to high levels of physical activity leads to 
departures from normal cardiac structure including left 
ventricular hypertrophy and left atrial dilatation, which have 
become known collectively as “athlete’s heart” [12]. 
Endurance training also leads to biatrial enlargement. Such 
structural effects are reversible with a period of detraining, a 
phenomenon that has use clinically in differentiating marked 
physiological hypertrophy from hypertrophic 
cardiomyopathy [13]. 

Both endurance and resistance training lead to an increase 
in overall cardiac volume. Strenuous endurance training such 
as long-distance running results in the greatest increase in 
cardiac volume in comparison to, for example, weightlifting 
[14]. MRI data support the hypothesis that the increase in LV 
mass is due to expansion of the myocyte rather than the 
extracellular component of the myocardium[15]. These 
structural changes are associated with normal or above 
normal cardiac function [16], although ejection fraction may 
appear reduced. It should be noted that the left ventricular 
systolic ejection fraction has a lower cut off for normal in 
trained athletes (45%), although stroke volume is preserved 
[17]. 

In terms of an explanation for these alterations, a number 
of mechanisms have been proposed. The different 
hemodynamic effects of endurance and resistance training 
have been held responsible for the development of eccentric 
and concentric left ventricular hypertrophy respectively [18]. 
Endurance training effectively results in volume overload 
while resistance training is analogous to pressure overload 
[19]. 

From a molecular point of view, physiological remodeling 
is characterized by differential activation of metabolic 
pathways that are distinct from those seen in pathological 
remodeling, in which reactivation of the fetal gene program 
is seen [20]. Activation of the IGF-1/IGF-1R/Akt pathway has 
been strongly implicated in the development of athlete’s 
heart [21]. The protein kinase AKT1 appears to play a key 
role. AKT1 knockout mice fail to develop hypertrophy in 
response to endurance training but not pressure overload [22].  

Athletic training is also associated with disturbances in 
electrophysiological characteristics of the heart. 
Physiological electrocardiographic changes are observed in 
the majority of trained athletes and can mimic some 
pathological conditions, including heart block and 
hypertrophic cardiomyopathy [23]. This may lead to difficulty 
in diagnosing those with underlying cardiovascular disease, 
and is of particular relevance given the risk of sudden death 
in athletes with concomitant cardiovascular disease [24]. As 
such specific recommendations for interpretation of the ECG 
in athletic individuals have been issued [25]. Genetic 
screening of athletes with abnormal ECGs revealed 
mutations in genes associated with hypertrophic 
cardiomyopathy in 5% of cases [26].  

Endurance training is also well known to cause resting 
bradycardia. The mechanism for this is controversial, with 
evidence supporting increased vagal tone and also 
downregulation of HCN4, the gene that encodes the 
pacemaker ionic channel [27, 28]. Recent work suggests that 
bradycardia in athletes is not associated with an increased 
risk of arrhythmias or syncope [29]. 

Participation in endurance sport may increase the risk of 
AF significantly, although the quality of evidence supporting 
this observation has been questioned [30, 31]. Regular or 
moderate physical activity does not appear to be associated 
with the same increased risk, and may be protective [32, 33]. 
There may also be gender differences in the risk of AF 
associated with physical activity, with men at higher risk [34]. 
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Table 1. Circulating miRNAs in athletes 

Exercise modality acute/chronic miR-changes miRNA ref. 
Cycling (60 minutes) acute downregulation miR-486 [90]

Cycling (60 minutes) acute downregulation (immediately) miR-106a, -221, -30b, -151-5p, let-7i, -146, -652, -151-3p [91]

upregulation (after 1 hour) miR-338-3p, 330-3p, -223, -139-5p, -143 
upregulation (3 hours later) miR-1 

Cycling acute upregulation miR-146a, -222, (-21, -221) [92]

Marathon running chronic elite runners: upregulation miR-1, miR-133a [10]

non-elite runners: downregulation miR-26a 
Cycling (3d/week, 4 weeks) chronic downregulation miR-486 [90]

Rowing (90 days) chronic upregulation miR-20a [92]

Cycling (5x/week, 12 weeks) chronic downregulation miR-342-3p, let-7d, -766, -25, -148a, -185, -21, -103, -107 [91] 
Running (13 hours/week) chronic upregulation miR-222, -21, -146a, -221 [94] 

The cause for the increased risk in endurance athletes is 
unknown. Potential mechanisms include inflammation and 
altered vagal tone [12, 35, 36]. Increased left atrial size has also 
been observed in approximately 20% of athletes, although 
this enlargement is not accompanied by electrical 
abnormalities as reflected by the appearance of the P wave 
on 12-lead ECG [37, 38]. In general progressively larger atria 
are associated with an increased risk of atrial fibrillation [39]. 
The largest increases in atrial size are seen in endurance 
athletes as compared to strength trained athletes [40]. 

It should be noted that despite the above listed departures 
from normality, a review of mortality data pertaining to 
endurance training and cardiac remodeling by Scharhag et al. 
found that endurance activities are associated with significant 
increases in longevity and reductions in mortality[14]. Given 
the overlap between athlete’s heart and some disease states 
therefore, concerted efforts have been made to define 
precisely the electrocardiographic and imaging parameters 
that best discriminate between those with a healthy cardiac 
substrate and those with underlying disease [41, 42]. 

MiRNAs and cardiac remodeling 

Many cardiac diseases, from genetic to acquired, have 
cardiac remodeling in common, irrespective of the 
underlying cause. Remodeling is a complex process; the term 
serves as an umbrella that includes electrical remodeling, 
structural remodeling, Ca2+-handling abnormalities, and 
neurohormonal dysregulation [6]. Electrical remodeling 
involves altered expression or function of ion channels, 
which can result in changes of the generation and conduction 
of electrical pulses in the heart, therefore facilitating 
arrhythmogenesis. Structural remodeling of the myocardium 
refers to tissue fibrosis or enlargement of atria or ventricles, 
providing an anatomical substrate for arrhythmia. Abnormal 
calcium handling in the cardiomyocyte undermines 
intracellular calcium homeostasis and can result in 
afterdepolarizations [43,44]. Dysregulation of the autonomic 
nervous system, such as altered vagal or sympathetic tone, 
can have downstream effects on ion channel function or 
cause intracellular calcium overload [45]. The role of miRNAs 
in cardiovascular disease has been intensively investigated 

and it is well recognized that they play a significant role in 
the cardiac remodeling process. 

The miRNA transcriptome has distinctive expression 
profiles among different tissues including the heart [46, 47]. A 
subset of known miRNAs are strongly expressed in the 
normal heart [48]. The expression of these cardiac-enriched 
miRNAs is significantly changed in the process of cardiac 
disease development [48]. One key aspect of miRNA biology 
is that one or a group of similarly expressed miRNAs can 
regulate multiple steps in a complex physiological process. 
Therefore, miRNAs whose expression is found to be tightly 
associated with cardiac remodeling have great therapeutic 
potential. Table 1 shows miRNAs that are involved in 
cardiac remodeling. 

MiRNAs known to be involved in cardiac electrical 
remodeling include miR-1, miR-133, miR-26, miR-208a, 
miR-328 and miR-499. MiR-1 and miR-133 are cardiac- and 
skeletal muscle specific miRNAs. MiR-1 targets KCNJ2, 
GJA1, KCNE1 and KCNB2 expression in the heart. 
Downregulation of miR-1 and upregulation of Kir2.1 
(encoded by KCNJ2) was observed in the heart of patients 
with AF, which leads to increased IK1 and shortened atrial 
action potential duration (APD), alterations that promote AF 
[49]. On the other hand, upregulation of miR-1 has been 
reported in the tachypaced rabbit atrium and the ventricles of 
rat, guinea pig, dog and human with MI or HF, accompanied 
by reduced Kir2.1, connexin-43 (encoded by GJA1), KCNE1 
and KCNB2 expression, which can result in APD 
prolongation. This can in turn cause early afterdepolarization 
(EAD) and conduction slowing, both of which are also 
substrates for arrhythmogenesis [50-52]. MiR-133 targets ERG. 
Upregulation of miR-133 with ERG downregulation is seen 
in the guinea pig heart with nicotine-induced atrial 
remodeling, leading to APD prolongation and EADs [52]. 
MiR-26 also targets KCNJ2. Downregulation of miR-26 and 
upregulation of Kir2.1 were found in the atrial tissue of dogs 
with HF and patients with AF [53]. MiR-208 targets GJA5 
(encoding connexin-40) in the heart and overexpression of 
mir-208a, an isoform found in the adult heart, causes 
connexin-40 downregulation. This alters electrical 
conduction in the mouse heart and increases vulnerability to 
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arrhythmia [54]. MiR-328 targets both α (CACNA1C) and β 
(CACNB1) subunits of the L-type calcium channel. MiR-328 
negatively regulates L-type calcium channel expression; 
dysregulation can alter APD, predisposing the canine heart to 
arrhythmogenesis [55]. MiR-499 is found to target KCNN3 
from in vitro studies. In human AF patients, its expression 
was increased in atrial tissue and SK3 (encoded by KCNN3) 
protein level was reduced, suggesting its role in cardiac 
electrical remodeling [56].  

Several miRNAs - miR-21, miR-26, miR-29, miR-30, 
miR-133, miR-499 and miR-590 - participate in cardiac 
structural remodeling. They target genes encoding proteins 
involved in extracellular matrix turnover and pro- or 
antifibrotic signaling cascades in the heart. MiR-21 is mainly 
expressed in cardiac fibroblasts and targets spry1 that 
encodes sprouty 1, an antifibrotic regulator of the profibrotic 
ERK-MAP kinase pathway [57]. Upregulated miR-21 
expression is a consistent finding among HF models in 
mouse, rat, dog and pig, and also human atrial tissue from 
AF patients [57-62]. Decreased sprouty 1 expression, increased 
expression of profibrotic connective tissue growth factor 
(CTGF), lysyl oxidase and Rac1-GTPase, and increased 
cardiac fibrosis, due to increased synthesis of extracellular 
matrix proteins such as collagen-1, collagen-3, fibrillin and 
matrix metalloproteinase 2 (MMP2), are reported in many of 
these studies [57, 59, 62]. The transcription factor phosphatase 
and tensin homologue (PTEN) is also a target of miR-21. A 
murine model of MI found increased levels of miR-21 and 
downregulation of PTEN, resulting in increased synthesis of 
MMP2 [58]. MiR-26 is involved in cardiac structural 
remodeling through targeting transient receptor potential 
cation 3 (TRPC3) channels in cardiac fibroblasts [63]. 
Downregulation of miR-26 and upregulation of TRPC3 
expression with increased fibroblast proliferation were 
observed in a canine ventricular tachy-pacing model [63]. 
Downregulation of miR-29b is associated with increased 
collagen, fibrillin, elastin and fibrosis in animal models of 
cardiac hypertrophy or HF, and in AF patients [64-66]. 
MiR-133 and miR-30 target CTGF. They were found to be 
downregulated, whereas CTGF expression and cardiac 
fibrosis were increased in different animal models and 
human cardiac tissue with cardiac hypertrophy [52, 61, 66-68]. 
MiR-499, which alters collagen content through targeting 
calcineurin, was found to be downregulated in a murine 
model of MI [69]. MiR-590 can target the profibrotic mediator 
transforming growth factor β receptor-II (TGF- βRII), and its 
downregulation is associated with increased TGF- βRII and 
collagen content in in vitro/in vivo studies of the canine 

heart, and with increased atrial fibrosis in human AF patients 
[52]. 

MiRNAs found to regulate cardiac calcium handling are 
miR-1, miR-214, miR-574-3p, miR-24 and miR-22 [44]. 
MiR-1 targets B56α, a regulatory subunit of PP2A. 
Upregulation of miR-1 represses PP2A activity by 
downregulating B56α, and therefore increases cardiac 
sarcoplasmic reticulum (SR) calcium-induced calcium 
release channel (CICR) phosphorylation, resulting in 
increased spontaneous SR calcium release, facilitating 
delayed afterdepolarizations (DAD)[70]. MiR-1 also targets 
NCX1, encoding the sodium-calcium exchanger. In a HF 
model, decreased miR-1 and increased NCX1 were reported 
[71]. MiR-214 can target NCX1 and is upregulated in cardiac 
hypertrophy and HF [72]. MiR-574-3p is upregulated in 
ventricular tissue from MI patients [73]. It targets SERCA2a. 
Decreased SERCA2a protein was found in the infarcted area, 
which decreases Ca2+ removal from cytoplasm and might 
cause Ca2+ overload in MI [73]. MiR-24 affects calcium 
handling through targeting junctophilin 2 (JP2), a protein 
ensuring proper T-tubule-SR structural coupling [74]. MiR-22 
regulates SERCA2a expression through targeting purine-rich 
element-binding protein B (PURB) that represses SRF [75]. 
SRF controls SERCA2a expression. Altered miR-22 levels 
have been found in human and animal models of HF [76, 77], in 
which SERCA2a is reduced, leading to disrupted cardiac 
function. 

The role of miRNAs in dysregulation of the autonomic 
nervous system has been less fully explored. MiR-133 
reportedly controls multiple components of the β1AR 
transduction cascade [78]. Increased miR-133 expression 
attenuates apoptosis and reduces fibrosis in the transaortic 
constriction mouse model that is used to study left 
ventricular hypertrophy [78]. Renal sympathetic denervation 
upregulates miR-101a and -133a and downregulates miR-21, 
therefore reducing connective tissue growth factor (CTGF) 
and accompanied by decreased plasma norepinephrine, renin, 
angiotensin II and aldosterone levels, ameliorating post-MI 
LV fibrosis [79].  

MiRNAs are relatively stable and detectable in the blood 
[80]. Several mechanisms have been proposed for the intra- to 
extra-cellular transposition of miRNAs as shown in Figure 1 
[7]. MiRNAs can be packed in exosomes, microvesicles or 
apoptotic bodies and secreted [10, 81]. They can also be 
released from dead cells in severely damaged myocardium 



RNA & DISEASE 2018; 5: e1442. doi: 10.14800/rd.1442; © 2018 by Ling Xiao, et al. 
http://www.smartscitech.com/index.php/rd 

Page 5 of 9 

such as in MI [9, 82]. These properties flag miRNAs as 
potential biomarkers for cardiovascular disease [7, 82]. Over 
the past five years, emerging studies have evaluated the 
diagnostic and prognostic potential of circulating miRNAs in 
patients with diseases like AF and/or HF [7]. For example, as 
mentioned earlier, miR-29b and miR-21 are involved in 
cardiac structural remodeling through the regulation of 
profibrotic protein expression. Plasma miR-29b levels were 
found to be significantly reduced in patients with AF or HF 
[65]. Plasma miR-21 as well as miR-150 levels were 
significantly reduced in AF patients from the miRhythm 
study [83]. 

Interestingly, our group reported that changes in several 
circulating mRNA levels correlated with atrial remodeling in 
athletes [10]. Although promising, available data on the 
evaluation of circulating miRNAs as biomarkers in clinical 
practice reveals huge variety and discrepancy of miRNA 
changes in patients with AF or HF [7]. The reliability of 
miRNAs as biomarkers for diagnosis and prognosis in 
cardiovascular diseases requires further future research. 

miRNAs in athletes 

There are limited data regarding miRNA biology that is 
specific to the athlete. A detailed study examining the profile 
of selected miRNAs (1, 26a, 29b, 30a and 133a) in elite and 
non-elite runners at different time points surrounding 
pre-marathon training and running a marathon revealed 
differential temporal patterns between the two groups. MiR-1 
and -133a increased significantly after the marathon in the 
ER group only, while miR-26a decreased significantly in the 
ER group only [10]. These findings were correlated with 

echocardiographic indices of left atrial size. 

MiRNAs have been proposed as potentially useful 
biomarkers in the field of anti-doping as part of the so-called 
biological passport [84]. Different miRNAs can be used to 
detect treatment with erythropoietin stimulating agents, 
recombinant human growth hormone, autologous blood 
transfusion and possibly testosterone [84-87]. Use of miRNAs 
as biomarkers in athletes is complicated by a number of 
issues. Athletic activity results in hemolysis which can 
confound measurement of plasma miRNAs due to the release 
of miRNAs from red blood cells [88]. Blondal et al suggest a 
comparison of miRNA-451 and -23a may be useful as a 
miRNA-expression based indicator of hemolysis [89]. 

In addition, acute and chronic exercise itself impacts the 
expression profile of several miRNAs. For example, Aoi et 
al noted a decrease in the plasma level of miRNA-486 
following exercise [90]. Nielsen et al observed 
downregulation of 8 miRNAs (miRNA-106a, -221, -30b, 
-151-5p, let-7i, miRNA-146, -652 and -151-3p) immediately
following a bout of exercise, but conversely an increased
plasma level of 5 miRNAs one hour later (miRNA-338-3p,
-330-3p, -223, -139-5p and -143) and an increased plasma
level of only one at three hours following exercise (miR-1) 
[91]. In contrast to these data, Baggish et al observed an 
upregulation of 4 miRNAs (miRNA-146a, -222, -21 and 
-221) immediately following a bout of exercise, with
recovery of levels to baseline after an hour [92].

Following chronic training, Nielsen at al observed a 
different expression profile, with downregulation of 7 
miRNAs (miR-342-3p, let-7d, miR-766, miR-25, miR-148a, 

Figure 1. miRNA release into circulation. MiRNAs are released into the circulation by various mechanisms using several 
carriers including exosomes, microvesicles, apoptotic bodies, HDL, or other miRNA binding proteins. 
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miR-185 and miR-21) and upregulation of 2(miR-103 and 
miR-107) [91]. Consistent with their acute exercise data 
however, Baggish et al observed significantly elevated levels 
of 4 miRNAs miRNA-146a, -222, -21 and -221) [92]. The 
contradictory findings pertaining to miRNA-21 are of 
particular interest, as lower levels of miRNA-21 have been 
implicated in a variety of cardiac pathologies including 
ventricular hypertrophy, heart failure and ischemia [93]. 

Finally, different modalities of athletic activity result in 
differential circulating miRNA profiles [94]. Four miRNAs 
(miR-222, miR-21, miR-146a and miR-221) were found to 
be differentially expressed depending on whether the athlete 
engaged in endurance or strength training. 

Therefore, in addition to correcting for hemolysis, the type 
of activity, quantity of training and timing of sampling would 
need to be carefully recorded and considered as a possible 
confounder in the assessment of miRNAs in these 
populations. 

Conclusion and future perspective 

MiRNAs are measureable and show cardiac 
disease-specific expression profiles. They may play a crucial 
role in the pathophysiology of cardiovascular illness. They 
show promise as biomarkers and may play a role in the 
development of novel therapies in the future, either as drug 
targets or predictors of response. They participate in the 
multiple complex biological processes of cardiac remodeling, 
many of the features of which are also present in athlete’s 
heart. Circulating miRNAs may therefore serve as 
biomarkers for cardiac remodeling in athletes. However, 
future research is needed to investigate how miRNAs are 
regulated by exercise and their roles in the cardiac adaptation 
to physical training. Our improved understanding of 
miRNA-mediated cardiac remodeling in athletes can help to 
manage and prevent exercise-training induced cardiac 
diseases.   
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