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In recent years, the impairment of RNA binding proteins that play key roles in the post-transcriptional 
regulation of gene expression has been linked to numerous neurological diseases. These RNA binding proteins 
perform critical mRNA processing steps in the nucleus, including splicing, polyadenylation, and export. In many 
cases, these RNA binding proteins are ubiquitously expressed raising key questions about why only brain 
function is impaired. Recently, mutations in the ZC3H14 gene, encoding an evolutionarily conserved, 
polyadenosine RNA binding protein, have been linked to a nonsyndromic form of autosomal recessive 
intellectual disability. Thus far, research on ZC3H14 and its Nab2 orthologs in budding yeast and Drosophila 
reveals that ZC3H14/Nab2 is important for mRNA processing and neuronal patterning. Two recent studies now 
provide evidence that ZC3H14/Nab2 may function in the quality control of mRNA splicing and export and could 
help to explain the molecular defects that cause neuronal dysfunction and lead to an inherited form of 
intellectual disability. These studies on ZC3H14/Nab2 reveal new clues to the puzzle of why loss of the 
ubiquitously expressed ZC3H14 protein specifically affects neurons. 
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Intellectual disability is a neurodevelopmental disorder 
characterized by reduced intellectual functioning (I.Q. ≤ 70) 
and deficits in adaptive behavior diagnosed by the age of 18 
years [1-3]. Intellectual disability has been estimated to affect 
1-3% of the population worldwide [4, 5]. Amongst the 
growing list of genes linked to intellectual disability (> 700) 
[2], many of these genes encode RNA binding proteins that 
play critical roles in post-transcriptional regulation of gene 
expression. Recently, mutations in the ZC3H14 gene, 
encoding an evolutionarily conserved, zinc finger 
polyadenosine RNA binding protein, have been linked to a 
severe nonsyndromic form of autosomal recessive 
intellectual disability (I.Q. ~30-50) [6]. Here, we highlight 

two recent studies [7, 8] on the role of the ZC3H14 protein and 
its budding yeast ortholog, Nab2, in the quality control of 
mRNA splicing and export that could provide insights into 
the function of ZC3H14 in the brain and how impairment of 
ZC3H14 could give rise to intellectual disability.  

The human ZC3H14 (zinc finger CCCH 
domain-containing #14) protein, also known as MSUT2 [9], 
belongs to an evolutionarily conserved family of nuclear zinc 
finger polyadenosine RNA binding (Pab) proteins that 
include S. cerevisiae Nab2 and Drosophila dNab2 [6, 10, 11]. 
Splice variants of ZC3H14 give rise to at least four human 
ZC3H14 protein isoforms - Isoform 1-4; ZC3H14 Isoforms 
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1-3 are ubiquitously expressed in all tissues of the body 
while Isoform 4 is primarily expressed in the testes [12]. The 
best-characterized ZC3H14 mutation linked to intellectual 
disability creates a premature termination codon - R154X - 
that causes loss of expression of ZC3H14 Isoform 1-3 [6]. 
Human ZC3H14 Isoform 1-3, fly dNab2, and budding yeast 
Nab2 each contain an N-terminal PWI-like domain, a nuclear 
targeting signal (cNLS or RGG domain) and a C-terminal 
tandem CCCH zinc finger domain (Figure 1) [6, 10-14]. Studies 
on S. cerevisiae Nab2 have shown that Nab2 is an essential, 
nuclear protein that shuttles between the nucleus and 
cytoplasm and plays key roles in mRNA export, mRNA 
stability, and regulation of poly(A) tail length on bulk RNA 
[11, 13, 15-17]. The Nab2 PWI-like domain serves as a 
protein-protein interaction domain that binds nuclear 
pore-associated proteins, such as Mlp1, and other factors and 
is important for nuclear mRNA export [13, 14, 18, 19]. The Nab2 
tandem zinc finger domain, containing seven CCCH zinc 
fingers, binds specifically to polyadenosine RNA with high 
affinity [10, 20]. Notably, nab2 N-terminal domain yeast 
mutants exhibit nuclear accumulation of poly(A) RNA and 
nab2 zinc finger mutants show extended bulk poly(A) tails 
[13, 15, 18, 20]. Like Nab2, the tandem zinc finger domains of 
ZC3H14 and dNab2, containing five zinc fingers, 
specifically bind to polyadenosine RNA [6, 10]. Importantly, 
cells depleted for ZC3H14 or dNab2 show extended bulk 
poly(A) tails, indicating that ZC3H14 and dNab2 also 
regulate poly(A) tail length [6, 21].   

Studies on dNab2 using dNab2 mutant fly models have 
provided insight into the critical function of dNab2 in 

neurons. Mutant flies that lack dNab2 have reduced viability 
and locomotor activity, impaired short-term memory, and 
defects in the neuronal patterning in the learning and 
memory center (mushroom body) of the fly brain [6, 22]. 
Critically, expression of dNab2 only in the neurons of dNab2 
zygotic mutant flies rescues the viability, locomotor activity 
and neuronal patterning in the flies, demonstrating that 
dNab2 is essential for proper neuronal function and also that 
expression of dNab2 only in neurons is sufficient to support 
proper neuronal function [6, 22]. In addition, neuronal 
expression of human ZC3H14 Isoform 1 in dNab2 mutant 
flies rescues function, indicating that ZC3H14 is a functional 
ortholog of dNab2 [21]. 

Work on ZC3H14 has shown that mouse ZC3H14 is 
enriched in murine hippocampal neurons that are critical for 
memory in the brain, supporting a role for ZC3H14 in 
neuronal function [6]. Moreover, mouse ZC3H14 colocalizes 
with poly(A) RNA in nuclear speckles, which are known 
centers of pre-mRNA processing, in rodent hippocampal 
neurons [6], suggesting ZC3H14 could function in neuronal 
RNA processing. Human ZC3H14 Isoform 1, but not 
Isoform 4, also localizes to nuclear speckles in mammalian 
cells [12]. Combined, these data suggest that ZC3H14 could 
regulate specific RNA processing steps to coordinate 
neuronal function and that ZC3H14 loss could lead to 
neuronal dysfunction and intellectual disability via 
dysregulation of neuronal RNA processing. Further studies 
on the molecular functions of ZC3H14 and its orthologs are 
therefore warranted to elucidate the critical role(s) of 
ZC3H14 in proper neuronal function. 

Figure 1. Domain structure of S. cerevisiae Nab2, Drosophila melanogaster dNab2, human ZC3H14 Isoform 1-4 polyadenosine 
RNA binding protein. The ZC3H14/Nab2 proteins contain the following domains: an N-terminal Pro-Trp-Ile (PWI)-like fold domain (red), 
important for protein-protein interaction and mRNA export in Nab2 [13, 14, 18, 19, 31], a Glu (Q)-rich domain (green), an RGG motif/predicted 
classical nuclear localization signal (cNLS) (orange), important for localization to the nucleus in Nab2 [13], and a C-terminal tandem Cys3His 
(CCCH) zinc finger domain (blue), critical for specific binding to polyadenosine RNA [10, 11, 20]. The Arg154Stop (R154X) premature 
termination codon mutation in ZC3H14 linked to intellectual disability that eliminates ZC3H14 Isoform 1-3 [6] is depicted above ZC3H14 
Isoform 1. Amino acid positions of domains are shown below each protein. 
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To this end, recent studies by Soucek et al. on budding 
yeast Nab2 function [8] and Wigington et al. on human 
ZC3H14 function [7] suggest that ZC3H14/Nab2 plays a role 
in the quality control of mRNA splicing and export. Soucek 
et al. set out to determine whether Nab2 affects the splicing 
of mRNA transcripts in yeast cells and found that nab2 zinc 
finger mutant cells exhibit increased levels of unspliced 
intron-containing pre-mRNAs, but do not show a strong 
effect on splicing in vitro [8]. In addition, Soucek et al. 

identified physical and genetic interactions between Nab2 
and splicing factors in yeast cells [8], most notably the Mud2 
and Msl5 proteins - the budding yeast orthologs of human U2 
snRNA auxiliary factor 2 (U2AF2)/U2AF65 and branchpoint 
binding protein (BBP)/splicing factor 1 (SF1) - that 
recognize the branchpoint sequence in introns [23-26]. 
Importantly, Soucek et al. also identified physical 
interactions between mouse ZC3H14 and splicing factors in 
mouse brain, including U2AF2, supporting a conserved link 

Figure 2. Model for ZC3H14/Nab2 function in quality control of mRNA splicing and 
export. ZC3H14/Nab2 binds to the poly(A) tail of a transcript and checks for interaction with 
early splicing factors, such as branchpoint recognition factors, U2AF2/Mud2 and BBP/Msl5, 
to detect improperly spliced and unspliced pre-mRNA. If ZC3H14/Nab2 binds to splicing 
factors on the pre-mRNA, ZC3H14/Nab2 could mark the transcript as unspliced, retain the 
transcript in the nucleus, and trigger recruitment of the RNA exosome (Exo) to the transcript 
for degradation. If ZC3H14/Nab2 does not bind to splicing factors, the mRNA transcript could 
be marked as spliced and ZC3H14/Nab2, together with other export factors, could stabilize 
and remodel the transcript and target the transcript to the nuclear pore complex via 
interaction with nuclear pore-associated proteins (Mlp1) for export to the cytoplasm. 
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between ZC3H14 and splicing in neuronal cells [8]. Finally, 
Soucek et al. observed that the function and pre-mRNA 
splicing defects of nab2 mutant cells are rescued by 
inactivation of the Rrp6 riboexonuclease subunit of the 
nuclear RNA exosome [8] - a conserved ribonuclease 
complex that is critical for RNA processing/degradation of 
non-coding RNA and pre-mRNA [27-30]. 

Combined, these results from Soucek et al. suggest a 
model (Figure 2) for ZC3H14/Nab2 quality control of 
mRNA splicing and export where ZC3H14/Nab2 binds the 
poly(A) tail of transcripts and detects improperly spliced and 
unspliced pre-mRNA via interaction with early splicing 
factors, such as branchpoint recognition factors, 
U2AF2/Mud2 and BBP/Msl5. ZC3H14/Nab2 binding to the 
splicing factors on the pre-mRNA could mark the transcript 
as unspliced, cause the retention of the transcript, and trigger 
the recruitment of the RNA exosome to the transcript for 
degradation. If ZC3H14/Nab2 does not bind to the splicing 
factors, the transcript could be marked as spliced and 
ZC3H14/Nab2 and other export factors could stabilize and 
remodel the transcript and target the transcript to the nuclear 
pore complex for export to the cytoplasm. Reduced RNA 
binding by ZC3H14/Nab2 due to disruption of Nab2 zinc 
fingers or depletion of ZC3H14 would be predicted to impair 
detection of unspliced pre-mRNA in the nucleus, leading to 
pre-mRNA escape from degradation, pre-mRNA 
accumulation and disruption of cellular function. 

Complementary to this work, Wigington et al. sought to 
identify target mRNA transcripts regulated by human 
ZC3H14 in human cells and discovered that ZC3H14 affects 
the steady-state level of only a small number of transcripts 
[7]. For further analysis, Wigington et al. selected the 
ATP5G1 transcript, encoding a critical subunit of the 
mitochondrial ATPase synthase F0 subunit, and found that 
depletion of ZC3H14 reduces the stability of ATP5G1 
mRNA [7]. Importantly, Wigington et al. showed that 
ZC3H14 binds to ATP5G1 mRNA in the nucleus and 
preferentially binds to unspliced ATP5G1 pre-mRNA [7]. In 
addition, Wigington et al. found that depletion of ZC3H14 
increases the level of unspliced ATP5G1 pre-mRNA in the 
cytoplasm [7]. Together, these results suggest that ZC3H14 
can detect the difference between unspliced pre-mRNA and 
mature mRNA, facilitate retention of pre-mRNA in the 
nucleus and protect mature mRNA from degradation. 
Notably, ZC3H14 interactions with splicing factors, like 
U2AF2, would allow ZC3H14 to recognize the unspliced 
pre-mRNA. The data on ZC3H14 from Wigington et al. are 
consistent with the Nab2 data from Soucek et al. and 
previous work on Nab2 and support a role for ZC3H14 in 
quality control of mRNA splicing and export (Figure 2). 

 These studies begin to suggest that ZC3H14/Nab2 plays 
a critical role in ensuring that pre-mRNAs are properly 
processed in the nucleus before the transcripts are exported to 
the cytoplasm. This model fits well with previous data 
showing that Nab2 is important for poly(A) RNA export in 
yeast cells and suggesting that Nab2 facilitates concentration 
of properly processed mRNA at the nuclear pore for export 
[16, 18, 19, 31]. ZC3H14/Nab2 interaction with splicing factors 
and pre-mRNA and ZC3H14 localization to pre-mRNA 
processing nuclear speckles [6-8, 12] supports a 
splicing-associated function for ZC3H14/Nab2 that could 
involve quality control.  Genetic interactions between Nab2 
and the Rrp6 riboexonuclease of the RNA exosome [8] and 
evidence that Nab2 can physically interact with Rrp6 [32, 33] 
also suggest that Nab2 could affect pre-mRNA degradation 
via recruitment or regulation of Rrp6. Alternatively, Nab2 
interactions with splicing factors could cause a 
conformational switch in Nab2 that alters the accessibility of 
the 3’-end of the pre-mRNA to Rrp6 degradation. The 
kinetics of ZC3H14/Nab2 association with splicing factors 
could also contribute to the signal of whether to protect or 
destroy the transcript.  

To further understand the molecular functions of 
ZC3H14/Nab2 in pre-mRNA processing and export, a 
number of challenges remain. The splicing proteins and other 
factors that directly bind to ZC3H14/Nab2 need to be defined 
to gain insight into how ZC3H14/Nab2 recognizes and 
discerns the difference between unprocessed pre-mRNA and 
mature mRNA. In addition, the RNA elements/structures in 
the mRNA targets bound by ZC3H14/Nab2 need to be 
examined to determine if they contribute to 
ZC3H14/Nab2-mediated recognition/regulation of the 
mRNA. Notably, RNA secondary structures, such as 
stem-loops, have been identified in several yeast introns that 
impact splicing efficiency [34-37]. The mechanism by which 
loss or impairment of ZC3H14/Nab2 leads to extended 
poly(A) tails on bulk RNA also requires deeper analysis. 
Whether ZC3H14/Nab2 directly interacts with the 
polyadenylation machinery or associates with splicing factors 
or other proteins to regulate polyadenylation needs to be 
examined. On this note, splicing and polyadenylation steps in 
pre-mRNA processing are known to be tightly coupled and 
splicing factors, such as U2AF2/U2AF65, which interact with 
ZC3H14, have been shown to stimulate cleavage and 
polyadenylation [38-40].  

As neurons appear uniquely sensitive to changes in RNA 
binding proteins and post-transcriptional processing of RNA 
[41], dysregulation of pre-mRNA levels and/or pre-mRNA 
escape to the cytoplasm due to loss of ZC3H14 could 
specifically disturb the function of neuronal cells, leading to 
intellectual disability in patients. Alternatively, the changes 
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to transcripts that occur when ZC3H14 is lost, such as 
lengthening of poly(A) tails, could impact the fate or 
function of the transcript in the cytoplasm. Unraveling the 
functions of ZC3H14/Nab2 in the future will outline new 
details on the mRNA processing landscape and shed light on 
the causes of neuronal dysfunction in intellectual disability.  
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