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Post-transcriptional regulation of gene expression is required for multiple aspects of neuronal development and 
function in the central nervous system. A sub-class of small non-coding RNA, called microRNAs (miRNAs), is 
emerging as key modulators of post-transcriptional gene regulation in numerous tissues, including the nervous 
system. Recent evidence has revealed a widespread role for miRNAs in various aspects of neuronal 
morphogenesis, including axogenesis, dendritogenesis, and synapse formation. Furthermore, dysregulation or 
altered expression of miRNAs has been associated with the pathogenesis of neurodevelopmental and psychiatric 
disorders. Here, we highlight recent advances in the study of miRNA-based regulation of neuronal development 
and their implications in neurological disorders. 
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Introduction 

Proper formation and maintenance of neuronal 
morphology is critical for normal brain function. The size 
and shape of neurons establish the functional neural circuits 
and neuronal connectivity. Although various proteins/factors, 
such as transcription factors, cytoskeletal elements, and 
components of various signaling pathways have been 
identified as contributors to neuronal morphogenesis, recent 
evidence has implicated microRNAs (miRNAs) as another 

important contributor to the regulation of neuronal 
morphology. 

miRNAs are a novel class of small non-coding RNAs 
containing 19–24 nucleotides. They act as 
post-transcriptional regulators of gene expression by binding 
to the 3’ untranslated region (3’UTR) of their target 
messenger RNAs (mRNAs) [1, 2]. miRNA genes are 
transcribed as primary-miRNA (pri-miRNA) by 
RNA-polymeraseⅡ. The primary transcript is then processed 
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by the RNase Ⅲ enzyme Drosha in the nucleus to generate 
a precursor-miRNA (pre-miRNA). The pre-miRNA is 
subsequently translocated to the cytoplasm by an exportin-5 
dependent mechanism and is then further processed into 
mature miRNA by Dicer. The mature miRNAs are then 
loaded into the RNA-induced silencing complex (RISC), a 
ribonucleoprotein complex that is composed of the human 
immunodeficiency virus transactivating response 
RNA-binding protein (TRBP), argonaute 2 (Ago2), and 
Dicer, and the resultant complex incorporate target mRNA to 
negatively regulate gene expression by inhibiting translation 
or promoting degradation of mRNA [3]. 

miRNAs have been shown to regulate numerous 
biological processes such as cell proliferation, differentiation, 
growth, and apoptosis [4-7]. Accumulating evidence has 
unveiled important roles of miRNAs in the regulation of 
brain development and differentiation of neural cells [8-10]. 
Here, we review recent advances in the understanding of the 
biological roles of miRNAs in neuronal development and 
also discuss evidence suggesting the association of these 
miRNAs with neurodevelopmental diseases including 
psychiatric disorders.  

miRNAs in axonal development 

Axons relay information to other neurons through 
chemical signals. Thus, functional neural circuits require 
appropriate axogenesis. The existence of mRNA and its 
post-transcriptional regulation in developing axons is 
manifesting as a crucial molecular mechanism underlying 
axonal development. Recent studies have also shown that 
miRNAs are present in axons and contribute to axonal 
development. 

Several brain-enriched and neuron-specific miRNAs have 
been identified. Among these miRNAs, the brain-enriched 
miR-9 has been well studied. A recent study showed that 
miR-9 is expressed in post-mitotic neurons and is detected in 
the axons of primary cortical neurons. Overexpression of 
miR-9 decreases axonal length and inhibition of endogenous 
miR-9 has the opposite effect, indicating that miR-9 
negatively regulates axonal elongation. It has been reported 
that these effects are emanated through the regulation of 
miR-9’s target; that is, microtubule-associated protein 1b 
(Map1b), an important protein for microtubule stability [11].  

One of the most abundant miRNAs expressed in the 
vertebrate central nervous system (CNS) is miR-124. The 
expression of miR-124 is increased during brain 
developmental events associated with axonal elaboration [12]. 
An elegant study by Sanuki et al. showed that miR-124 

regulates axon development by inhibiting LIM/homeobox 
protein 2 (Lhx2) expression in vivo [13]. Another report 
demonstrated that miR-124 controls axon growth by 
targeting mRNA of small GTPase RhoG [14].  

Zhang et al. reported that the components of the 
miR-17-92 cluster are detected in distal axons of cultured 
cortical neurons. Increased expression levels of this cluster 
promoted axonal development, whereas the blocking of 
miR-19a, one component of the cluster, inhibited axon 
formation [15].  

Recent work identified miR-132 as a positive regulator of 
axon development of the mouse dorsal root ganglion (DRG). 
Mechanistically, miR-132 was shown to modulate the 
expression of Ras GTPase activator Rasa1 [16]. 

miRNAs in dendrite development 

As dendrites are the site of most synaptic contacts, 
adequate growth and branching of dendrites are important for 
neural circuitry function. Recent findings have provided 
evidence that miRNAs participate in the regulation of 
dendrite development. In this section, we review recent 
progress in uncovering the miRNA-mediating molecular 
mechanisms controlling dendrite morphogenesis. 

An early study by Smrt et al. suggested that 
brain-enriched miRNA, specifically miR-137, plays a key 
role in modulating dendrite development. Overexpression of 
miR-137 negatively controls dendritic morphogenesis, 
whereas inhibition of miR-137 function had the opposite 
effect. This effect of miR-137 on dendritic development is 
mediated by the regulation of Mind bomb one (Mib1), which 
is a ubiquitin ligase known to be important in 
neurodevelopment [17]. Another study demonstrated the 
positive role of miR-134 in dendrite development. miR-134 
is a component of miR-379-410, a large cluster of 
brain-specific miRNAs. This miR-134 promotes dendritic 
morphogenesis by inhibiting translation of the mRNA 
encoding the translational repressor Pumilio2, a 
RNA-binding protein known to regulate dendrite 
morphogenesis [18]. A genetic experiment demonstrated that 
miR-132 regulates dendrite maturation of newborn neurons 
in the adult hippocampus, possibly via modulating the 
GTPase-activating protein p250GAP [19]. In addition to 
playing a role in axon development, miR-9 has also been 
shown to regulate dendritic growth. Inactivation of miR-9 
leads to impairment in dendritic development in vivo through 
downregulation of the transcriptional repressor RE1 silencing 
transcription factor (REST) [20].  
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Recently, we demonstrated miR-214 had a role in the 
regulation of dendritic development [21]. We showed that 
overexpression of miR-214 promotes dendritic growth and 
complexity, whereas blocking of endogenous miR-214-3p, 
one of the mature forms of miR-214, suppresses dendritic 
development. Our study also demonstrated that miR-214-3p 
targets the conserved 3’-UTR of quaking (Qki), which is a 
suggested gene implicated in schizophrenia. 

miRNAs in synaptic formation 

Several lines of evidence have uncovered that miRNAs act 
as important regulators of synaptic morphological dynamics 
and plasticity. Therefore, miRNAs are thought to underlie 
higher brain functions such as learning and memory [22].  

It has been shown that many miRNAs function as negative 
regulators of synaptic formations. For example, miR-134 was 
the first reported miRNA that regulates synaptic formation. 
Overexpression of miR-134 in cultured neurons decreased 
the size of dendritic spines through translational repression of 
Lim-domain containing protein kinase 1 (LimK1), a regulator 
of actin polymerization [23]. miR-34a inhibits synaptic 
function by targeting mRNAs of the synaptic components 
synaptotagmin-1 and syntaxin-1A [24]. miR-138, a 
brain-enriched miRNA, is localized in the dendrite and 
negatively regulates the size of dendritic spines through the 
regulation of acyl protein thioesterase 1 (APT1), an enzyme 
controlling the palmitoylation status of multiple proteins that 
are known to function at the synapse [25]. 

Positive regulation of synapse development by miRNAs 
have also been reported. miR-125b and miR-132 were shown 
to be associated with fragile X mental retardation protein 
(FMRP). Increased expression of miR-125b induced longer 
and thinner processes of cultured hippocampal neurons, 
whereas miR-132 overexpression led to stubby and 
mushroom-shaped spine formations [26]. In this work, 
miR-125b was shown to repress expression of its target, 
NMDA receptor subunit NR2A, along with FMRP and 
argonaute 1. Another study supported the positive role of 
miR-132 on synapse development in vitro and in vivo, 
showing that miR-132 represses Rho GTPase activating 
protein p250GAP expression [27]. miR-132 was also found to 
target the mRNA encoding the methyl CpG-binding protein 2 
(MeCP2), a regulator of neuronal morphology and synaptic 
formation [28, 29]. Furthermore, we have recently shown that 
MeCP2 promotes the processing of miR-199a as a 
component of the microprocessor Drosha complex, and that 
miR-199a promotes excitatory synaptic transmission and 
density through targeting mTOR signal negative regulators in 
the cultured hippocampal neurons [30].  

miRNAs in neurodevelopmental disorders 

Accumulating studies have suggested that impaired 
post-transcriptional regulation caused by miRNA 
dysregulation may contribute to defective neuronal function 
and plasticity in neurological diseases including 
neurodevelopmental disorders [31]. miRNAs have been 
implicated in the pathophysiology of neurodevelopmental 
and psychiatric disorders [32]. Here, we focus on two 
miRNAs; i.e., miR-137 and miR-199a, which have been 
shown to contribute functionally to the pathogenesis of 
diseases.  

Recent genome-wide association study (GWAS) in 
schizophrenia showed that rs1625579, which is found within 
the putative primary transcript for miR-137, is associated 
with an increased risk of schizophrenia [33]. Other groups 
have also confirmed this association [34, 35]. Moreover, 
functional MRI (fMRI) studies have demonstrated that 
variation in miR-137 specifically influences the activity of 
the posterior right medial frontal gyrus during a cognitive 
task and functional connectivity of the front-amygdala and 
dorsolateral prefrontal-hippocampus in emotional tasks [36,

37]. Another study has also shown that increased miR-137 
expression levels lead to the downregulation of presynaptic 
target genes such as complexin-1 (Cplx1) and 
synaptotagmin-1 (Syt1) in vitro and in vivo, causing 
impairments of synaptic vesicle trafficking and alterations in 
synaptic plasticity [38]. 

In addition to these findings regarding schizophrenia, we 
demonstrated a role for miR-199a in the pathogenesis of Rett 
syndrome (RTT) [30]. RTT is a severe progressive 
neurodevelopmental disorder caused by MECP2 mutations. 
As mentioned above, we have shown that MeCP2 facilitates 
the post-transcriptional processing of miR-199a as a 
component of the Drosha complex and miR-199a positively 
controls mTOR signaling, which is associated with a variety 
of neurodevelopmental disorders [39], by targeting mRNAs 
for inhibitors of mTOR signaling such as Pde4d, Sirt1 and 
Hif1α. Genetic deletion of miR-199a was shown to 
recapitulate numerous RTT phenotypes of MeCP2-knockout 
mice. Dysregulation of miR-199a expression at a 
post-transcriptional level was also found in the brain of 
patients with RTT. These findings suggest that miR-199a, a 
MeCP2 downstream miRNA, contributes to RTT 
pathophysiology [30]. 

Conclusions 

We summarized the above-introduced functions of 
miRNAs in this review in Table 1. Although functional
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Table 1. miRNAs involved in neuronal morphogenesis 

Function Effect miRNAs Targets Reference 
Axon development Negative miR-9 Map1b [11] 

Positive miR-124 Lhx2, RhoG [13, 14] 
miR-19a PTEN [15] 
miR-132 Rasa1 [16] 

Dendrite development Negative miR-137 Mib1 [17] 
Positive miR-134 Pumilio2 [18] 

miR-132 p250GAP [19] 
miR-9 REST [20] 
miR-214 Qki [21] 

Synapse formation Negative miR-134 LimK1 [23] 
miR-34a Synaptotagmin-1, Syntaxin-1A [24] 
miR-138 APT1 [25] 

Positive miR-125b NR2A [26] 
miR-132 p250GAP, MeCP2 [27-29] 
miR-199a PDE4D, SIRT1, HIF1a [30] 

characterization of miRNAs in the mammalian neuronal 
system is still in its infancy, the accumulating evidence 
described in this review suggests that miRNAs function as 
key modulators of neuronal morphogenesis and pathological 
conditions in neurodevelopmental diseases. Considering the 
facts that many miRNAs are brain-enriched or even specific 
[40] and that individual miRNA can target multiple genes [41],
miRNAs can be considered as a group of molecules
dominating the complex process of neuronal development
and brain functions. Future studies are required to identify
further functional targets of each miRNA and the
downstream gene networks that are associated with neuronal
functions. Numerous studies have revealed that many
miRNA expression levels are altered in a variety of
neurodevelopmental disorders [42, 43]. However, currently,
functional studies of the miRNAs in vivo are still limited.
Thus, we expect that elucidating the roles of these miRNAs
help to further understand the mechanisms of brain
development and pathogenesis of neurodevelopmental
disorders, opening new avenues for designing therapeutic
strategies that target the miRNA-mediated pathway in the
CNS.
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