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We have previously presented the histone methyltransferase enhancer of zeste homolog 2 (EZH2) of the 
polycomb repressive complex 2 (PRC2) as a potential therapeutic target in Multiple Myeloma (MM). In a recent 
article in Oncotarget by Alzrigat. et al. 2017, we have reported on the novel finding that EZH2 inhibition using 
the highly selective inhibitor of EZH2 enzymatic activity, UNC1999, reactivated the expression of microRNA 
genes previously reported to be underexpressed in MM. Among these, we have identified miR-125a-3p and 
miR-320c as potential tumor suppressor microRNAs as they were predicted to target MM-associated oncogenes; 
IRF-4, XBP-1 and BLIMP-1. We also found EZH2 inhibition to reactivate the expression of miR-494, a 
previously reported regulator of the c-MYC oncogene. In addition, we could report that EZH2 inhibition 
downregulated the expression of a few well described oncogenic microRNAs in MM. The data from our recent 
article are here highlighted as it shed a new light onto the oncogenic function of the PRC2 in MM. These data 
further strengthen the notion that the PRC2 complex may be of potential therapeutic interest. 
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Multiple myeloma (MM) is a malignancy of 
plasmablasts/plasma cells (PCs) characterized by the 
accumulation of monoclonal antibody producing PCs in the 
bone marrow (BM). Clinically, MM is a heterogeneous 
disease and MM patients’ show multiple clinical symptoms 
including lytic bone lesions, anemia, hypercalcemia, renal 
failure and immunodeficiency [1-3]. More importantly, MM is 
a biologically complex disorder characterized by a large 
clonal heterogeneity as reflected by a wide range of genetic 

alterations and manifested in a patient-to-patient variation in 
overall survival and response to treatment [4-7]. This MM 
associated heterogeneity has certainly limited the clinical 
benefits of current as well as personalized treatment 
strategies. Therefore, MM remains a fatal disease making 
development of new targeted therapeutic approaches 
imperative. 

Several reports from genetic sequencing and gene 
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expression studies in MM have documented a cross-talk 
between genetic lesions and aberrant epigenetic profiles i.e. 
DNA methylation [8, 9], histone modifications [10, 11] and 
non-coding RNA [12-14] in the pathogenesis and prognosis of 
MM. An emerging notion is now that deregulation of
epigenetic modifiers is an important factor contributing to the
development of MM [15-18]. For example, the chromosomal
translocation t(4;14) results in the overexpression of the
multiple myeloma set domain (MMSET) histone
methyltransferase leading to an increase in histone 3 lysine
36 di-methylation (H3K36me2) levels and a concomitant
decrease in histone 3 lysine 27 tri-methylation (H3K27me3)
levels [10, 11]. The enhancer of zeste homolog 2 (EZH2) is an
epigenetic modifier that has been shown by us and others to
be commonly overexpressed in MM [16, 19, 20]. EZH2 is the
enzymatic subunit of the polycomb repressive complex 2
(PRC2), an important regulator of both normal development
as well as disease [21-23]. Through EZH2, the PRC2 complex
establishes the H3K27me3 mark, a transcriptional repressive
histone mark involved in the regulation of transcriptional
programs during normal development as well as cellular
transformation [21-23]. EZH2 was found to be overexpressed

in malignant PCs as compared to normal BM PCs, and to 
enhance MM cell growth [19]. Recently, we have shown that a 
common set of PRC2/H3K27me3 targeted genes are 
underexpressed in MM patients [20, 24]. Stressing the clinical 
relevance of gene silencing by PRC2, we found that the 
repression of PRC2 target genes (H3K27me3 targets) in MM 
correlates with gene silencing in advanced stages of MM and 
in patients presenting with poor survival [24]. The 
development of epigenetic inhibitors that specifically 
dampen the EZH2 enzymatic activity has recently made the 
evaluation of the therapeutic potential of EZH2 in MM 
possible. We and others have demonstrated the anti-MM 
effects mediated by EZH2 inhibition by using highly 
selective inhibitors of the EZH2 enzymatic activity [24-26]. All 
these studies reported on the anti-MM effects of EZH2 
inhibitors via reactivation of a set of PRC2 target genes with 
anti-tumor functions such as genes involved in apoptosis, cell 
differentiation, cell adhesion and migration. 

As here highlighted, we have recently reported for the first 
time that inhibition of EZH2 using the small highly selective 
inhibitor of EZH2 enzymatic activity, the UNC1999 [27], has 

Figure 1. PRC2 represses the expression of tumor suppressor microRNAs in multiple myeloma. (a) PRC2 via EZH2 enzymatic 
subunit installs H3K27me3 mark at the genes encoding miR-125a, miR-320c and miR-494 in MM cells leading to their silencing. This leads 
to sustained expression of MM-associated oncogenes predicted to be targets of the repressed microRNA resulting in enhanced MM cell 
growth and survival. (b) Pharmacological inhibition of EZH2 methyltransferase activity using highly selective inhibitors such as UNC1999 
abolishes the installation of H3K27me3 at the microRNA genes, leading to their transcriptional activation. Expression of miR-125a, 
miR-320c and miR-494 leads to reduced expression of MM-associated oncogenes thus inducing MM cell death. 
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an impact on the global expression of microRNA genes in 
MM. In this study we presented PRC2 as a novel regulator of
a set of microRNAs with tumor suppressor or oncogenic
function in MM [28]. In the study, we found that EZH2
inhibition by UNC1999 resulted in the upregulation of 118
microRNAs, of which many have been identified as
downregulated tumor suppressor microRNAs in MM [28]. We
could show that 2 potential tumor suppressor microRNAs,
miR-125a-3p and miR-320c, were reactivated upon EZH2
inhibition (Figure 1). We selected these microRNAs based
on their predicted binding and function as common
regulators of MM important oncogenes i.e. IRF-4, XBP-1
and BLIMP-1 [28]. We also found that UNC1999 upregulated
the expression of miR-494 with a previously reported
function to negatively regulate the expression of the c-MYC
oncogene [29]. Using chromatin immunoprecipitation
followed by quantitative real time PCR (ChIP-qPCR), we
found that miR-125a and miR-320c were direct targets of
PRC2 in MM cell lines and primary MM patient cells and
that their reactivation, as predicted, correlated with the
downregulation of expression of MM-associated oncogenes
IRF-4, XBP-1, BLIMP-1 and c-MYC [28]. The significance of
our finding relies on the fact that these oncogenes have been
demonstrated to be essential for MM cell growth and
survival [30-33] and MM pathogenesis in human and murine
models [34-37].

We also showed that the inhibition of EZH2 
downregulated the expression of microRNAs reported to be 
overexpressed and to possess oncogenic functions in MM 
[28]. Among these, the miR-17-92 and miR-106b-25 clusters 
in MM have been attributed oncogenic functions due to their 
regulation of MM associated tumor suppressor genes. For 
example, members of the miR-17-92 cluster have previously 
been shown to target the tumor suppressors SOCS1 and BIM 
[38, 39]. Similarly miR-106b-25 in MM has been suggested to 
modulate the activity of the tumor suppressor P53 [38, 40]. 
Furthermore, members of the miR-17-92 cluster and Let-7 
family were suggested to enhance MM angiogenesis [41], an 
important step in MM establishment and progression. 
Interestingly, the expression of miR-17-92 and miR-106b-25 
clusters is positively modulated by c-MYC in tumors other 
than MM [42, 43]. Therefore, we suggest that EZH2 inhibition 
in MM may indirectly affect the expression of onco-miRNAs 
via downregulation of MM-associated oncogenes such as 
c-MYC. 

Recent analysis of microRNA expression in MM revealed 
that deregulation of microRNA expression correlates with 
molecular subtype, disease progression, patients’ survival 
and response to treatment [13, 14, 44-47]. Several reports have 
suggested genetic lesions such as chromosomal 
translocations and copy number variations [13, 14, 46, 47], but 

also epigenetic mechanisms e.g. DNA methylation [48, 49] as 
possible mechanisms leading to aberrant expression of 
microRNA genes in MM. For example, DNA methylation 
was shown to epigenetically silence the expression of tumor 
suppressor microRNAs such as miR-155, miR-198, 
miR-135a*, miR-200c, miR-663 and miR-483-5p [50]. Our 
recent findings expand the knowledge concerning the 
regulation of microRNA expression in MM and suggest also 
polycomb-mediated gene repression as a mechanism that 
may deregulate and silence tumor suppressor microRNAs. 
Overexpression of tumor suppressor microRNAs or their 
mimics have in some cases been proven to have anti-MM 
activity inhibiting MM cell growth, migration and colony 
formation in vitro [48, 50] and in vivo [51, 52]. The possibility of 
using microRNAs as a novel therapeutic strategy in MM 
should thus be the subject for further investigation. 

In summary, our recent publication [28] demonstrated for 
the first time PRC2 as a regulator of microRNA expression 
in MM, thus emphasizing the oncogenic role of EZH2 in 
MM. Our present findings show that EZH2 inhibition leads
to upregulation of a set of tumor suppressor microRNAs
targeting important MM-associated oncogenes, and suggest
EZH2 inhibitors and the silenced tumor suppressor
microRNAs as possible novel therapeutic strategies in MM.
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