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Inflammation contributes a significant part to the advancement of diabetic kidney disease (DKD), yet relatively 

little is known about the root cause of these inflammatory events. Serum Amyloid A (SAA) triggers a potent 

inflammatory response in a variety of tissues and is up-regulated in glomerular and tubulointerstitial 

compartments of the diabetic kidney. Under inflammatory conditions, podocytes, along with other intrinsic cells, 

produce SAA locally in the kidney. Our recent work has shown that SAA induces NF-κB activation and 

subsequent inflammatory chemokines and cytokines in cultured podocytes. Recent evidence suggests that local 

production of SAA in diabetes may lead to monocyte and macrophage recruitment, neutrophil activation, and 

other related incidents resulting in sustained chronic inflammatory conditions in the kidney which may further 

exacerbate DKD. 
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SAA in diabetic kidney disease 

Diabetic kidney disease (DKD) is recognized as an 

inflammatory disease due to robust evidence that leukocytes 

are recruited to and cause injury in kidney tissue of patients 

with DKD [1, 2]. Acute-phase serum amyloid A (SAA) has 

been implicated in promoting inflammation in a variety of 

tissues [3-5]. We have recently demonstrated that SAA is 

elevated in the plasma and kidneys of both people with DKD 

and analogous mouse models [3]. A mechanism for this could 

be production of SAA by exposure of the kidney, and other 

tissues and organs, to advanced glycation end products 

(AGE), anomalous metabolic by-products that are elevated in 

the diabetic state and promote oxidative stress and 

inflammation [6-8]. Our research has shown that AGE induce 

SAA up-regulation in glomerular podocytes through the 

advanced glycation end product receptor (RAGE) [8]. This 

receptor is responsible for initiation of a variety of 

inflammatory events in DKD, including the attraction of 

leukocytes to the glomerulus [9]. RAGE is known to activate 

NF-κB, a central transcription factor that elevates expression 

of a variety of cytokines and chemokines and is up-regulated 

by SAA in vitro [3, 10]. NF-κB has been directly implicated in 

contributing to DKD through the promotion of macrophage 

infiltration in kidneys of diabetic mouse models [11]. Indeed, 

human patients with DKD showed a direct correlation of 

activated NF-κB levels in peripheral blood mononucleocytes 

compared to control subjects. In addition, NF-κB-controlled 

promoters are up-regulated in patients with DKD [12, 13]. 

Podocytes exposed to SAA are potential intermediaries for 

NF-κB-mediated inflammation in DKD, which parallels 

other recent findings showing that podocytes produce 
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inflammatory mediators that contribute to self-injury by 

autocrine mechanisms [3, 14, 15].  

Exposure of podocytes to SAA induces a major 

inflammatory response triggering NF-κB-mediated 

transcription of a wide variety of cytokines and chemokines, 

including SAA itself [3]. A repercussion of 

AGE/RAGE-mediated up-regulation of SAA is that SAA 

could be a source of persistent diabetes-induced chronic 

inflammation in the kidney through a forward-feeding 

autocrine loop (Figure 1) [16]. We hypothesize that such a 

feed-forward loop may be a manifestation of 

epigenetic-independent “metabolic memory,” arising from 

aberrant glycemic metabolism resulting in perpetual 

inflammation via SAA activation. Thus, even with 

restoration of normoglycemia and dietary interventions to 

reduce pathological metabolites such as AGE, the 

inflammatory cycle may persist unabated.  

SAA-induced expression of pro-inflammatory factors 

Our research demonstrated that several classes of proteins 

were up-regulated by exposure to SAA in cultured podocytes 
[3]. Several of these have been directly implicated in 

DKD-related inflammation. One class is the CC chemokine 

family. Perhaps the most well-known is monocyte 

chemoattractant protein-1 (MCP-1, or Ccl2). One of the 

functions of MCP-1 is to stop rolling monocytes by arresting 

them to vascular endothelium under blood flow conditions, 

indicating that increased production of MCP-1 in cells 

promotes accumulation of monocytes in tissues [17]. MCP-1 

has been shown to correlate with macrophage accumulation 

and kidney injury in a diabetic mouse model [18]. Subsequent 

studies have shown that RAGE-induced MCP-1 contributes 

to initiation and progression of kidney damage in diabetic 

mice and also correlates with advanced tubulointerstitial 

lesions in human DKD [19-22].  

Several other CC chemokines are also up-regulated in 

podocytes exposed to SAA [3]. Like MCP-1, the chemokine 

RANTES or Ccl5 stops rolling monocytes attached to 

vascular endothelium under flow conditions [23]. RANTES is 

known to be expressed in the kidney of nephritic mouse 

models, recruits T-cells and initiates other immune responses, 

causing injury to tissues [24]. Macrophage inflammatory 

protein-3-alpha (MIP-3 or Ccl20) is up-regulated in proximal 

tubular cells under high-glucose conditions and appears to be 

dependent on transforming growth factor-β1, known to play 

a key role in regulating inflammation and fibrosis under 

diabetic conditions [25].  

Members of the CXC chemokine family are also 

Figure 1. Model of SAA-induced inflammation response. Exposure to diabetes-like conditions causes increased production of SAA by 

key kidney cells, including podocytes, mesangial cells, and tubular epithelial cells. In turn, SAA induces expression of a host of chemokines 
that recruit leukocytes, including monocytes, neutrophils, T-cells, and dendritic cells to the glomerulus. 
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Table 1. SAA-induced chemokines and known target cells 

Chemokines Cell Type 

Cxcl1/2/3/5/ 

 
Neutrophils 

Ccl2/5 

 
Monocytes 

Cxcl 11 

Ccl2/5/11/17/19 

 
T-Cells 

C17/19 

 
Dendritic Cells 

 

up-regulated by exposure of podocytes to SAA [3]. One of 

these is epithelial-derived-neutrophil-activating protein 

(ENA-78 or Cxcl5). Increased expression of ENA-78 in the 

tubular epithelium has recently been shown to promote 

neutrophil accumulation and contribute to kidney damage in 

kidneys of mice with glomerulonephritis [26]. Furthermore, 

human subjects with type 2 diabetes and DKD have 

increased urinary levels of ENA-78 compared to non-diabetic 

patients with other kidney diseases, suggesting that ENA-78 

specifically contributes to inflammation in DKD [27]. Other 

members of the CxC family that are also up-regulated in 

podocytes by SAA include: Cxcl1, Cxcl2, Cxcl3 and Cxcl11 
[3]. Atherosclerotic plaques are a known source of elevated 

SAA expression, and the receptor CxcR2, whose ligands 

include Cxcl1, 2, 3, and 5, mediates macrophage 

accumulation in these plaques [28, 29]. Cxcl1 is 

transcriptionally up-regulated in kidneys of mice and humans 

with DKD, while Cxcl2 has been implicated in protein kinase 

Cβ-mediated kidney damage in diabetic mice [30-32]. Cxcl11 

has also been shown to be up-regulated in the 

tubulointerstitium of people with DKD [32]. This ligand binds 

the CxcR3 receptor, which has been found to be expressed 

on mesangial cells in people with glomerulonephritis, and is 

thought to be involved in mesangial cell proliferation.[33] 

Blocking this receptor inhibited leukocyte recruitment under 

inflammatory conditions [34]. SAA also promotes chemotaxis 

of monocytes and dendritic cells by activating a synergistic 

CC and CxC chemokine axis [35]. Therefore, it is likely these 

chemokines work to facilitate leukocyte recruitment and 

mediate SAA-related inflammation in the kidney. 

In addition to leukocytic chemokines, other 

pro-inflammatory factors associated with diabetic kidney 

injury are expressed in SAA-exposed podocytes [3]. 

Complement component 3 (C3) plays a central role in 

complement activation by both the classical and alternate 

pathways. There is clear consensus that the dysregulation of 

the alternate complement pathway, leading to increased 

deposition of C3 without immunoglobulins in the glomerulus, 

is involved in pathogenesis of a class of kidney diseases 

termed C3 glomerulopathy [36]. In addition to classical C3 

production by the liver and mononuclear cells, we recently 

discovered that C3 is expressed by podocytes and markedly 

up-regulated by SAA exposure [3]. Moreover, 

hyperglycemia-dependent glomerular C3 deposition occurred 

concurrently with development and progression of 

glomerular injury in the db/db mouse model of DKD [18]. 

Notably, these data in experimental models are corroborated 

by transcriptomic data that demonstrate increased C3 

expression in kidneys of humans with DKD [32].  
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SAA and local tissue inflammation  

The production of numerous pro-inflammatory factors by 

kidney cells exposed to SAA may be a significant contributor 

to tissue inflammation. As different cytokines and 

chemokines attract different cell-types, the myriad factors we 

found to be increased in the podocyte response to SAA 

exposure are likely to result in accumulation of different cell 

types, including monocytes, neutrophils, T-cells, and 

dendritic cells in the glomerulus and tubulointerstitium 

(Table 1 and Figure 1). A recent study in SAA3 knockout 

mice has been particularly enlightening and provides 

evidence to support our hypothesis that SAA is a major 

contributor to local inflammation and leukocyte recruitment. 

SAA3 knockout (SAA3-/-) C57BL/6 mice fed a 

pro-inflammatory high-fat, high-sucrose diet showed 

decreased expression of MCP-1 and also the inflammatory 

mediator tumor necrosis factor in visceral adipose tissue [37]. 

Additionally, macrophage accumulation in visceral adipose 

tissue was attenuated [37]. Although data on the kidneys of 

these mice were not reported, these results support the 

general concept that SAA can increase local tissue 

inflammation and macrophage recruitment. 

Conclusions 

It is well established that expression of chemoattractant 

factors and accumulation of leukocytes in kidney tissue are 

major contributors to DKD. Given our recent findings 

showing elevated SAA in the blood and kidney tissue 

(glomerular and tubulointerstitial compartments) of patients 

with DKD, along with our data demonstrating that SAA 

induces robust expression of a host of chemoattractant 

molecules in podocytes, it is likely that SAA promotes 

inflammation in DKD. We propose the following conceptual 

model: Diabetes results in production of serum amyloid A in 

kidney cells via an AGE-RAGE signaling pathway. Local 

production of SAA results in production of chemoattractant 

and pro-inflammatory factors including SAA itself. The 

eventual result is a feed-forward signaling loop of SAA that 

perpetuates autocrine expression by podoyctes, leading to 

continuing RAGE activation, leukocyte recruitment, and 

inflammation in the diabetic kidney (Figure 1). Future 

therapies targeting SAA may attenuate a key mediator in the 

production of inflammation, providing a promising avenue to 

reduce inflammation and preserve the kidney in diabetes.  
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