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Several studies have identified the importance of pro-inflammatory mediators in the development and 

progression of cardiac disease such as heart failure (HF). Recently, a number of studies from basic research 

have used gene expression, array screening, cloning, and other techniques to identify new cardiokines and 

cardiokine networks that are regulated during cardiac stress. IL-33, an IL-1 family member, binds to a ST2L, 

which is a member of the Toll-like receptor (TLR)/IL1R superfamily. Besides ST2L, the ST2 gene can encode 

two other isoforms by alternative splicing, including a secreted soluble ST2 (sST2) form that could act as a 

decoy receptor for IL-33. Studies in animal models suggest that IL-33/ST2 is involved in cardiovascular disease 

and plays an important role in protection of cardiac muscle. Furthermore, sST2 is a promising biomarker 

predictive of worse outcome in several cardiovascular diseases. Although manipulation of IL-33/ST2 system is 

still in its infancy, it may be a unique opportunity to quench the inflammatory response after cardiac injury.  
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 Introduction  

Inflammation has emerged as a crucial process that plays 

a role in cardiovascular disease [1]. Several studies have 

identified the importance of pro-inflammatory mediators in 

the development and progression of cardiac disease such as 

heart failure (HF) [2-4]. These factors can induce myocardial 

remodeling either by promoting the recruitment of 

inflammatory cells or by producing maladaptive effects in 

the heart, such as left ventricle (LV) remodeling and 

endothelial dysfunction, thus facilitating hypertrophy and 

fibrosis [5]. However, anti-inflammatory therapeutic 

strategies tested so far have been largely disappointing, due 

to either neutral results either worsening of HF. These 

findings have triggered important considerations, including 

the relevance of looking for novel targets [6]. 

Recently, a number of studies from basic research have 

used gene expression, array screening, cloning, and other 

techniques to identify new cardiokines and cardiokine 

networks that are regulated during cardiac stress [4]. With 

genetic animal models, many of these newly identified 

molecules have been shown to have functional roles in 

cardiac remodeling. 

In this review we will focus on recent research related to 

the cardiovascular role of the IL-33/ST2 pathway, 

including the translational aspect. The potential of using 

IL-33 or its receptor ST2 for therapeutic intervention of 

cardiovascular disease will also be discussed. Finally, the 
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role of soluble ST2 as a potential biomarker for 

cardiovascular disease will be debated. 

 1. IL-33/ST2 pathway 

a. IL-33 identification, expression and activation  

Interleukin (IL)-33 (also known as IL-1F11) was 

initially identified as DVS27, a gene up-regulated in canine 

cerebral vasospasm [7], and as a “nuclear factor from high 

endothelial venules” (NF-HEV) [8]. In 2005, analysis of 

computational structural databases showed that this 

cytokine had a high homology to IL-18, and a β-sheet 

trefoil fold structure characteristic of IL-1 family proteins 
[9]. 

The human and mouse sequences for IL-33 have been 

localized to chromosomes 9 (9p24.1) and 19 (19qc1), 

coding proteins of 270 and 266 amino acids, respectively 

(Fig. 1). The 30 kDa molecule has high homology to IL-18 

(Fig. 1) [9]. IL-33 is a protein with a double role, acting as a 

traditional cytokine as well as a nuclear factor with 

transcriptional properties, although its physiological role is 

not fully clear [10]. 

IL-33 is present in many tissues, but its expression is 

greatest in stomach, lung, spinal cord, brain, and skin and 

low in lymph tissue, spleen, pancreas, kidney, and heart [9]. 

Some controversy exists regarding IL-33 biologically 

active form. During necrosis, the full-length IL-33, 

considered the biologically active form, may be released 

from injured cells. Conversely during apoptosis, IL-33 is 

cleaved by caspases-3/7 producing an inhibition of its pro-

inflammatory effects. These data suggest that full-length 

IL-33 may act as an endogenous danger signal or alarmin, 

while inactivation of IL-33 may be needed as a fail-safe 

control mechanism to avoid further impairment of host

Figure 1. Genomic regions, transcripts, and products of IL-33 (A) and ST2 (B). Human IL-33 gene is located on chromosome     
9, ST2 gene on chromosome 2. Figures were built up by Sequence Viewer 3.1 available at http://www.ncbi.nlm.nih.gov/gene/ (Green 

bar: gene; blue bar: RNA transcripts; red bar: coding region).  
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tissues by the IL-33 pro-inflammatory effect during 

apoptosis [10-11] (Fig. 2). 

b. IL-33 signaling by ST2 

The gene called ST2 (also known as T1, IL1RL1, or Fit1) 

was discovered in 1989 and is mapped on chromosome 

2q12 together with the wider interleukin 1 (IL-1) gene 

cluster [12]. Alternative splicing of gene promoter and 3' 

processing of the same mRNA produce four transcriptional 

products. Of these, two are the most important isoforms: 

IL1RL1-β or ST2L, a membrane receptor member of the 

interleukin-1 receptor family, and IL1RL1-α or sST2, a 

truncated soluble receptor that could be measured in 

peripheral circulation (Fig. 1B). ST2 gene has a proximal 

and a distal promoter, which could modify its 

transcriptional regulation [13]. ST2L is composed of three 

extracellular immunoglobulin G domains, a single trans-

membrane domain, and an intracellular domain [9, 12, 14]. The 

sST2 lacks the trans-membrane and intracellular domains 

and it moves freely through the peripheral circulation.  

IL-33 has been recognized as a functional ligand of 

ST2L [9, 14] and it binds ST2L on inflammatory cell 

membranes. This binding activates mitogen-activated 

protein kinase (MAPK)-kinases as well as several 

Figure 2. Production and signaling of IL-33/ST2 pathway. The full length IL-
33, considered the biologically active form, may be produced during necrosis. 
Conversely, IL-33 is cleaved by caspases-3/7 producing an inactive form during 
apoptosis. Active IL-33 can stimulate the formation of the heterodimeric 
ST2L/IL-1RAcP complex on the target cells or can be inhibited by sST2 that 
acts as a decoy receptor. Upon the activation of this complex, the signaling is 
induced. The MyD88, IRAK1/4 and TRAF-6 are localized to the receptor 
complex, leading to activation of transcription factors as NF-kB, p38 and JNK, 
as well as ERK (directly by MyD88). This leads to transcription of inflammatory 
genes. 
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biochemical pathways that lead the activation of the 

inhibitor of nucler factor-κB (NF-κB) kinase (IKK) 

complex, which activates NF-kB to exert its pro-

inflammatory actions [15]. Moreover, sST2 appears to act as 

a decoy-receptor for IL-33: it binds IL-33, consequently 

removing this protein from its possible binding with ST2L. 

sST2 binding with IL-33 could limit the expression and 

activation of NF-kB, thus reducing the inflammatory 

response (Fig. 2). IL-33 has been supposed to regulate the 

ST2L and sST2 mRNA transcription by itself [15, 16].     

2. Cardiac role of IL-33/ST2 pathway 

a. Cellular models 

The involvement of ST2 in cardiac compartment was 

initially suggested by Weinberg et al. in a screen of gene 

transcripts expressed by mechanically stressed car- 

diomyocytes in an in vitro model [17]. They found that both 

sST2 and ST2L are induced in cardiomyocytes and 

fibroblasts after biomechanical stress [17, 18].  

IL-33 and its receptor ST2 show distinct expression 

patterns in the heart. IL-33 is expressed by human adult 

cardiac myocytes and fibroblasts and by human coronary 

artery smooth muscle cells, while ST2 is predominantly 

expressed by endothelial cells of the cardiac vasculature. 

IL-33 is upregulated by TNF-α, IFN-γ and IL-1β and is 

released during necrosis of human cardiac and smooth 

muscle cells [19] (Fig. 3).  

b. Animal models 

The discovery of IL-33 as a ligand for ST2 has led to 

exploration of the role of IL-33/ST2 signaling in the 

myocardium. Thus, following its binding with ST2L, IL-33 

has been shown to have anti-hypertrophic and antifibrotic 

effects in the heart. In an in vitro rodent model of 

cardiomyocytes undergoing stretching, a direct relationship 

between duration of biomechanical strain and IL-33 and 

ST2 expression was observed [17]. Furthermore, 

administration of sST2, the soluble form, blocked the 

positive anti-hypertrophic actions of IL-33 in a dose-

dependent manner, suggesting that sST2 may act as a 

“decoy receptor” for circulating IL-33. In an in vivo model 

of pressure overload, ST2 knockout mice showed- higher 

myocyte hypertrophy and fibrosis and lower fractional 

shortening than wild-type mice after 4 weeks of aortic 

banding. IL-33 administration preserved wild-type mice 

from the hypertrophic phenotype, but this action was not 

observed in ST2−/− mice, suggesting that IL-33/ST2 

signaling protects against adverse cardiac remodeling in 

vivo [19-20].  

A possible mechanism by which the alteration in ST2 

signaling may lead to tissue fibrosis has been identified by 

Seki and co-workers. IL-33 inhibits cardiomyocyte

Figure 3. Specific production of IL-33, ST2 and sST2 by the different cellular types of the 
cardiovascular compartment. IL-33 is expressed by human adult cardiac myocytes and fibroblasts and 
by human coronary artery smooth muscle cells. The receptor ST2 is predominantly expressed by 
endothelial cells of the cardiac vasculature. Both sST2 and ST2L are induced in cardiomyocytes and 
fibroblasts after biomechanical stress. 
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apoptosis both in vitro and in vivo via suppression of 

caspase-3 activity and increased expression of inhibitor of 

apoptosis proteins (IAP), thus improving cardiac 

contractile function after ischemia/reperfusion myocardial 

injury in rats. The cardioprotective effects of IL-33 were 

abolished in ST2-null mice, demonstrating that IL-33 is 

cardioprotective through ST2 signaling [21]. Moreover, it 

has been demonstrated that the protective role of IL-33 may 

be reduced by endothelin-1, which enhanced the production 

of sST2 and inhibited IL-33 downstream signaling through 

p38 MAP Kinase [22]. 

c. Human model  

In a very recent paper [23], it has been shown that patients 

with HF presented differentially expressed levels of 

ST2/IL-33 as well as conventional inflammatory mediators 

(IL-6, IL-8 and TNFα) in both plasma and cardiac tissue, 

and that these modifications are corrected by mechanical 

unloading through left ventricle assist device (LVAD) 

support. Lower expression of ST2 and IL-33 was found in 

cardiac tissue of patients undergoing LVAD support 

compared to more stable patients undergoing heart 

transplantation on medical therapy only. These data 

suggested a protective effect of ST2/IL-33 pathway in the 

worsening of cardiac function, as previous reported [17, 20-

21]. This cardioprotective action was confirmed by the 

increase in their levels by mechanical unloading after 

LVAD support, possibly due to the reverse remodeling 

process, which was able to restore levels comparable to 

those observed for the heart transplant group of patients.  

Results from this study also provided further insight into 

the role of classic inflammatory mediators in HF [23]. As 

with the IL-33/ST2 pathway, IL-6, IL-8 and TNF-a were 

Figure 4.Theraputic strategies targeting IL-33/ST2 pathway. The IL-33/ST2 pathway may be 
triggered by exogenous administration of IL-33 (1) or by promoting IL-33 release from cardiac 
cells (2). IL-33/ST2 complex could be increased by inhibiting sST2 by therapeutic compounds 
designed to directly stimulate the ST2 (3). Modifications of the intracellular signaling, including 
sequestration of MyD88 by exogenous pharmaco-therapeutics, could represent a possible option 
(4). 
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Table 1. Cardiac diseases in which sST2 circulating 

levels were measured 

Cardiac disease References 

Acute myocardial infarction 29-33, 50 

Acute heart failure 35-37, 44, 48, 50 

Chronic heart failure 38-43, 52-54 

Pleural cardiac effusion 55 

Aortic stenosis 56 

Diastolic dysfunction and diabetes 57 

Coronary bypass and heart surgery 58, 59 

Acute cardiac allograft rejection 60 

Acute Kawasaki disease 61 

low in less stable HF patients and were higher after LVAD 

support up to a level comparable to that of patients directly 

undergoing heart transplantation with only medical therapy. 

In spite of their well-documented role as pro-inflammatory 

cytokines, these molecules showed a negative role in HF 

progression and were positively involved in the reverse 

remodeling process by LVAD, eventually suggesting a 

compensatory effect to the adverse remodeling process of 

HF. Recent studies hypothesized that temporally regulated 

activation and suppression of inflammation may be critical 

for achieving effective cardiac repair, indicating a 

paradoxical role of inflammation in cardiac repair [24].  

A very recent paper demonstrated that in human 

myocardial tissue from hearts of patients undergoing heart 

transplantation, endothelial cells are the main cell type 

expressing both IL-33 as well as its receptor ST2 and that 

IL-33 expression correlates positively with that TNF-α and 

IFN-γ, respectively [19]. 

3. ST2 as therapeutic target 

The results from experimental and clinical studies 

suggest that modulation of the IL-33/ST2 system could 

exert cardioprotective activity in the context of heart 

disease. Thus, strategies that chronically target IL-33/ST2 

signaling should be considered to have potential adverse 

cardiovascular consequences. Moreover, manipulation of 

the IL-33/ST2 pathway is a promising new therapeutic 

approach for treating or preventing various disorders in 

which inflammation is a critical process. To date, several 

approaches have been proved to modulate IL-33/ST2 

signaling, addressing its cardioprotective activity [12] (Fig. 

4). The IL-33/ST2 pathway may be triggered by exogenous 

administration of IL-33 or by promoting IL-33 release from 

cardiac cells. Moreover, IL-33/ST2 complex could be 

increased by inhibiting sST2, the IL-33 decoy receptor, by 

therapeutic compounds designed to directly stimulate the 

ST2. Alternatively, modification of intracellular signaling 

could be a possible option: the cardioprotective effects of 

IL-33 may be reproduced by sequestration of MyD88 by 

exogenous pharmacotherapeutics. Moreover, further study 

is needed in order to explain the possible causal 

relationships between the molecules involved in this 

signaling, such as  nuclear factor-kB (NF-kB), adaptor 

protein 1 (AP-1) or extracellular signal-regulated kinase 

(ERK). These clarifications might be an important step in 

the IL/33/ST2 signaling that is accessible to manipulation.  

However, due to the involvement of the IL-33/ST2 

system in a variety of processes, its manipulation may also 

have negative consequences, resulting in exacerbation of 

inflammatory conditions. Conversely, inhibition of this 

system to regulate these inflammatory conditions could 

result in a worsening of cardiovascular disease. 

4. ST2 as circulating biomarker  

The possibility of using sST2 as a potential biomarker 

for cardiac disease was originally raised in 2002 when it 

was found that sST2 levels were transiently increased in 

peripheral circulation of mice after myocardial infarction 
[17]. Later, it was shown that blood concentrations of sST2 

increase in heart disease and are taken into account as a 

possible prognostic marker [25-27].  

a. sST2 Assay 

The first ELISA for evaluating circulating sST2 in 

serum/plasma was developed in 2000 [25]. To date, three 

main assays have been tested: the MBL ST2 ELISA kit 

(Medical & Biological Laboratories, MA, USA), the 

Human ST2/IL-1 R4 DuoSet® (R&D Systems, MN, USA) 

and the Presage ST2 Assay (Critical Diagnostics, CA, USA) 
[26]. The MBL ST2 assay and the R&D ST2 assay are 

research assays. In 2011, the Presage ST2 Assay received 

the Conformitè Europèenne (CE) Mark and the US FDA 

approved the Presage ST2 Assay for use in assessing the 

prognosis of HF patients [27].  

sST2 concentrations obtained by these three 

commercially available assays are not equal to each other, 

probably due to the different methodological conditions, 

including standards, antibodies, and also reagents and 

buffers [26, 28]. Thus, the direct comparison of the results 

obtained with the three methods is not feasible and the 

superiority of one out of the three assays has yet to be 

demonstrated. Moreover, the three methods should be 

standardized because many methodological aspects should 

be clarified. It is not clear if any of the three methods has a 

calibrator that is correctly quantified and which epitopes 

are detected by the antibodies against sST2 used for the 

three methods. Therefore, it is not known whether primary, 

secondary or tertiary structures of the sST2 protein are 

specifically recognized by the different antibodies used in 

the three assays. Another important issue is related to the 

analytical sensitivity of each methods [26, 28].   
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b. Clinical relevance 

Several clinical studies in patients with acute myocardial 

infarction or acute coronary syndrome [29-34], in acute and 

chronic HF [35- 43], showed that high sST2 levels are related 

to adverse outcome. Moreover, in HF serial determination 

of sST2 has a prognostic role and could show value in 

biomarker-directed therapy [27, 43, 44]. Conversely, 

determination of sST2 was not useful for the diagnosis of 

acute myocardial infarction or acute coronary syndrome [44-

46] and HF in patients with acute dyspnea [47, 48].  

Compared with cardiac Natriuretic Peptides (ANP, BNP 

or NT-proBNP) that specifically mirror the 

pathophysiological conditions of cardiac stretch, sST2 does 

not completely show this specificity, thus lacking the 

prerequisite for diagnostic purposes. sST2 does not merely 

reflect the condition of cardiac stretch but is also involved 

in other non-cardiac conditions such as inflammation. In 

fact, inflammation is a process simultaneously present in a 

large proportion of patients with heart disease, making 

sST2 a poor diagnostic marker in such a setting. On the 

contrary, as a consequence of the non-specificity of sST2, 

it seems to be a reliable prognostic marker in various 

diseases (Table 1).  

Accordingly, sST2 could be a good prognostic marker in 

patients with negative outcome presenting simultaneously 

HF and inflammatory diseases [27, 49]. Because sST2 

appears to be associated with both inflammation and 

cardiac stretch, it could be a strong and independent 

outcome predictor in this setting. Of note, it is becoming 

evident that sST2 is not only an independent prognostic 

biomarker, but it is also able to provide incremental 

prognostic value outperforming clinical variables and other 

biomarkers. This is a very relevant issue in clinical practice, 

because clinicians currently use diverse clinical 

information, several scoring systems and established 

biomarkers such as cardiac Troponins or Natriuretic 

Peptides for evaluation of patient outcome and 

management [27].  

It was recently shown that baseline cardiac ST2 

positively correlated with its soluble isoform and did not 

show any modification after 1 month of LVAD support [23]. 

These data might confirm the cardiac production of soluble 

sST2, and considering the role of ST2 as a soluble decoy 

receptor for IL-33, could explain the negative prognostic 

value of this biomarker in individuals with HF. Conversely, 

before LVAD implant cardiac IL- 33 was negatively related 

with its plasma concentration and resulted significantly 

decreased after 1 month- compared to its values before 

LVAD support, suggesting a different regulatory 

mechanism for IL-33 [23]. 

Conclusions 

IL-33/ST2 pathway plays an important role in protection 

of cardiac muscle. Furthermore, sST2 is a promising 

biomarker predictive of worse outcome in several 

cardiovascular diseases. Although modulation of the IL-

33/ST2 system is still in its infancy, it may be a unique 

opportunity to quench the inflammatory response after 

cardiac injury. It remains to better understand many aspects 

of IL-33/ST2 downstream intracellular signaling. 
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