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The nuclear hormone receptor peroxisome proliferator-activated receptor  (PPAR) is a ligand-dependent 

transcription factor that is involved in fatty acid metabolism, obesity, wound healing, inflammation, and 

cancer.  Despite decades of research, the role of PPAR in inflammation and colorectal cancer remains 

unclear and somewhat controversial. Our recent work presented the first genetic evidence demonstrating that 

PPAR is required for chronic colonic inflammation and colitis-associated carcinogenesis. We also found that 

a PPAR downstream pathway, namely the COX-2-derived PGE2 signaling, mediated crosstalk between tumor 

epithelial cells and macrophages to promote chronic inflammation and colitis-associated tumor genesis. In this 

brief review, we summarize recent studies on the role of PPAR in inflammatory bowel disease (IBD) and 

colorectal cancer (CRC) and highlight recent advances in our understanding of how PPAR and COX-2-

drevided PGE2 signaling coordinately promote chronic colonic inflammation and colitis-associate 

tumorigenesis. Elucidating the role of PPAR in inflammation and CRC may provide a rationale for 

development of PPAR antagonists as new therapeutic agents in treatment of IBD and CRC. 
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Colorectal cancer (CRC) is the third most common solid 

malignancy and the second leading cause of cancer deaths 

in the USA. CRC includes at least three major forms: 

hereditary, sporadic, and colitis-associated CRC. A large 

body of evidence reveals that genetic mutations, epigenetic 

changes, chronic inflammation, diet, and lifestyle are risk 

factors for developing CRC. Indeed, ulcerative colitis, the 

most common form of inflammatory bowel disease (IBD), 

is associated with an increased risk for the development of 

CRC [1]. The best evidence for the link between chronic 

inflammation and CRC came from epidemiologic studies 

and clinical trials showing that long-term use of non-

steroidal anti-inflammatory drugs (NSAIDs) reduced the 

relative risk of developing CRC by 40-50% [2]. In particular, 
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daily use of aspirin significantly suppressed adenoma 

growth in patients with familial adenomatous polyposis 

(FAP) [3] and cancer incidence in patients with HNPCC [4].  

FAP is due to a germ-line mutation in one allele of the 

tumor suppressor gene adenomatous polyposis coli (APC). 

In sporadic CRC, the data from clinical trials have revealed 

that daily use of aspirin prevented adenoma recurrence in 

patients with a history of colorectal adenomas [5-8]. 

Moreover, the epidemiologic and clinical evidence 

showing that daily use of aspirin prevented metastatic 

spread [9] and inhibited the spread of primary tumor cells to 

other organs of the body after the diagnosis of localized 

disease, in particular CRC [10], suggests the potential 

therapeutic efficacy of NSAIDs in advanced CRC. 

Epidemiologic studies further showed that regular use of 

aspirin specifically reduced risk of the subgroup patients 

whose colon tumors expressed cyclooxygenase 2 (COX-2) 

at higher levels [11] and its use after the diagnosis of CRC at 

stage I, II and III prolonged overall survival in patients 

whose tumors overexpress COX-2 [12]. These findings 

suggest that the preventive and inhibitory effects of aspirin 

on CRC might depend on the presence of COX-2.  

COX-2 is an immediate-early response gene that is 

normally absent from most cells but is highly induced at 

sites of inflammation and in the tumor microenvironment 
[13]. A large body of evidence reveals that COX-2 

expression is elevated in up to 90% of colorectal 

carcinomas and 50% of adenomas [14] and its expression is 

correlated with a lower survival rate among CRC patients 
[15]. Our group and others have demonstrated that COX-2 

plays important roles in inflammation and cancer [16]. COX 

enzymes convert arachidonic acid into an endoperoxide 

intermediate that can be further metabolized to five 

structurally related prostanoids, including prostaglandins 

(PGs). Thus, the biological functions of COX enzymes 

depend on which COX-derived prostanoids are produced in 

cancers.  PGE2 is the most abundant PG found in human 

CRC and plays a predominant role in promoting tumor 

growth [17,18]. Emerging epidemiologic evidence and a 

phase II biomarker study showed that urinary PGE2 

metabolite (PGE-M) levels were associated with an 

increased risk of developing colorectal [19-21], gastric [22], 

and breast cancer [23,24] and that PGE-M levels correlated 

with disease progression in head and neck squamous cell 

carcinomas [25]. More importantly, epidemiologic studies 

revealed that levels of urinary PGE-M in healthy humans 
[26] and breast cancer patients [23,24] are suppressed 

significantly not only by treatment with nonselective 

NSAIDs, including aspirin, but also by COX-2 selective 

inhibitors, suggesting that the majority of PGE2 formed in 

vivo may be derived from COX-2. Phase II studies also 

showed that non-small cell lung cancer (NSCLC) patients 

with complete and partial responses to adjuvant therapy 

with paclitaxel, carboplatin, and celecoxib experienced a 

significant decrease in the level of urinary PGE-M [27] and 

recurrent NSCLC patients with lower urinary PGE-M 

levels had a longer survival than those with no change or 

an increase in PGE-M when treated with celecoxib and 

docetaxel [28]. Collectively, these results indicate that the 

anti-tumor effects of NSAIDs, including aspirin, is likely 

due to reduction of PGE2 levels by inhibiting COX-2 

activity.  

Our previous study showed that PGE2 accelerated 

colonic adenoma formation and growth via activation of 

peroxisome proliferator-activated receptor  (PPAR) in 

ApcMin/+ mice [29]. The ApcMin/+ mouse carries a point 

mutation at one allele of the Apc gene, which is utilized as 

a model for FAP and a pre-malignant model for sporadic 

CRC in humans. We found that PGE2 indirectly 

transactivated PPAR via a PI3K-AKT signaling in tumor 

epithelial cells [29]. These results demonstrate that PPAR 

is one of the downstream targets of PGE2. This finding is 

likely to be clinically relevant because a case-control study 

in a large population showed that the protective effect of 

NSAIDs against colorectal adenomas was reported to be 

modulated by a polymorphism in the PPAR gene  [30]. 

PPAR is a member of the nuclear hormone super family 

that is ligand-dependent transcription factors. This receptor 

has been implicated in a variety of physiology and 

pathologic processes, such as nutrient metabolism, energy 

homeostasis, inflammation, and cancer. However, the role 

of PPAR in IBD and CRC remains unclear and somewhat 

controversial based on the results from PPAR knockout 

mouse studies [31]. The conflicting results may be due to 

different deletion strategies used to knock out PPAR. The 

deletion of Ppard exon 4 and/or 5, which encode an 

essential portion of the DNA binding domain, is believed 

to totally disrupt PPAR function as a transcriptional factor. 

In contrast, the deletion of exon 8, the last exon of Ppard 

gene, is thought to generate a hypomorphic allele, which 

retains some aporeceptor function. All results from mice in 

which Ppard exons 4-5 or exon 4 were deleted suggest that 

PPAR has pro-inflammatory and pro-tumor effects in 

mouse models of CRC [32,33]. In addition to CRC, a recent 

study showed that loss of PPAR by deletion of its exons 

4-5 also suppressed UV-induced skin tumor burden [34]. In 

contrast, all results from mice in which Ppard exon 8 was 

deleted indicate that PPAR exerts anti-inflammatory and 

anti-tumor effects in mouse models of CRC and colitis-

associated tumor genesis [35,36]. To further clarify the role 

of PPAR in colorectal tumorigenesis, another approach 

would be to study the impact of PPAR overexpression on 

tumorigenesis because the levels of PPAR have been 

reported to be elevated in human colorectal adenomas and 

carcinomas [37-40]. Shureiqi’s group recently reported that 

targeted intestinal PPAR overexpression promoted 

colonic tumorigenesis in azoxymethane (AOM)-treated 
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PPAR transgenic mice [41]. AOM is a potent carcinogen 

used to induce colorectal cancer in mice and rats. Similarly, 

targeted mammary epithelium PPAR overexpression 

accelerated estrogen receptor-positive mammary neoplasia 

in PPAR transgenic mice [42]. In addition, a recent case-

control study showed that genetic variants (SNPs) of Ppard 

gene were associated with increased risk of gastric cancer 
[43].  Collectively, these recent findings support the 

hypothesis that PPAR promotes colorectal tumorigenesis.  

In order to investigate mechanisms involved in colitis-

associated carcinogenesis, investigators have developed 

several animal models.  In these models, there are at least 

two approaches used to induce colitis-associated 

carcinogenesis.  One way is to induce chronic colonic 

inflammation by dextran sulfate sodium (DSS) in mice 

pretreated with AOM or in mice with a genetic 

predisposition to intestinal tumor formation such as the 

ApcMin/+ mouse. Another approach is to initiate colonic 

epithelial cell transformation by AOM in mice with a 

genetic predisposition to IBD such as the Il-10-/- mouse. 

Although repeated DSS treatment induces chronic colonic 

inflammation, the DSS model represents a process of injury 

and wound healing. A recent report indicated that deletion 

of PPAR in intestinal epithelial cells did not affect tumor 

incidence in AOM/DSS-treated mice [44].  Our recent 

results revealed that loss of PPAR by deletion of its exons 

4-5 attenuated chronic colonic inflammation and colitis-

associated adenoma formation and growth with a reduction 

of certain pro-inflammatory mediators, including 

chemokines/cytokines, COX-2, and PGE2 in both DSS-

treated ApcMin/+ mice and AOM-treated Il-10-/- mice [45]. In 

this study, we also found that PPAR activation induced 

COX-2 expression in colonic tumor epithelial cells. COX-

2-derived PGE2 stimulates macrophages to produce pro-

inflammatory chemokines that recruit pro-inflammatory 

leukocytes from the circulation to local inflammatory sites 

and cytokines that contribute to colitis-associated 

tumorigenesis. PGE2 has also been shown to promote 

tumor development by: 1) directly inducing tumor 

epithelial cell proliferation, survival, and 

migration/invasion and 2) impacting the tumor 

microenvironment so that it supports tumor progression by 

inhibiting immunosurveillance and inducing angiogenesis 
[17]. Our results suggest that PPAR accelerates chronic 

colonic inflammation and inflammation-associated tumor 

growth via the COX-2-derived PGE2 signaling pathway.  

In summary, recent studies from our group and others 

has demonstrated that PPAR promoted colonic 

inflammation and tumorigenesis. Moreover, our results 

suggest that PGE2 mediates the crosstalk between colonic 

tumor epithelial cells and macrophages via a self-

amplifying loop between PPAR and COX-2-derived 

PGE2 signaling pathways. These results should raise great 

caution for development of PPAR agonists in the 

treatment of dyslipidemias, obesity, and insulin resistance. 

In the future, clarifying the role of PPAR in chronic 

inflammation and cancer may hold promise for 

development of PPAR antagonists as new therapeutic 

agents in treatment of IBD and colitis-associated CRC as 

well as other cancers.  It is essential to first evaluate 

whether PPAR antagonists inhibit colonic inflammation 

and tumorigenesis in mouse models of IBD and CRC. 
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