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Cylindromatosis (CYLD) was originally identified as a tumor suppressor, because loss of its function causes a 

benign human tumor. In the past, multitude of  efforts have been made toward elucidating the biological 

features of CYLD, and uncovered not only its multiple functions as deubiquitinase, but also the clinical 

significance of CYLD in a wide variety of diseases. At present, dysregulation of CYLD by loss of its expression is 

believed to play key roles in a multiple of pathological processes, including tumor cell proliferation, survival, and 

inflammatory responses by regulating their specific cell signaling pathway. Recently, we discovered that loss of 

CYLD expression in hypoxic regions of human glioblastoma multiforme (GBM), the most aggressive brain 

tumor, suggesting the clinical significance of CYLD in the pathogenesis of GBM. Here, we reviewed the diverse 

biological features and clinical significance of CYLD, particularly focusing on the roles of CYLD as a critical 

regulator of hypoxia-mediated inflammation in GBM.  
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CYLD 

In 2000, Bignell and colleagues identified the familial 

cylindromatosis tumor suppressor gene (CYLD) by 

determining germline mutations in cylindromatosis families 
[1]. Tumor suppressor CYLD gene is localized on 

chromosome 16q12.1 and encodes a protein of 956 amino 

acids. CYLD was initially reported when it was identified 

that a mutation in the gene causes the formation of benign 

tumors in skin appendages [1]. Subsequent studied have 

revealed that CYLD acts as a negative regulator for nuclear 

factor-B (NF-B) signaling by deubiquitinating tumor 

necrosis factor (TNF) receptor-associated factor (TRAF) 2, 

TRAF6, and NF-B essential modulator (NEMO, also 

known as IB kinase ) [2-4]. The deubiquitinating enzyme 

CYLD contains ubiquitin carboxy-terminal hydrolases that 

bind to ubiquitin chain and detach it from a target protein [5]. 

In patients with familial cylindromatosis, malfunction of 

deubiquitinating enzyme CYLD increases resistance to 

apoptosis caused by NF-B overactivation, suggesting a 

mechanism through which loss of CYLD leads to 

tumorigenesis [1-4].   

REVIEW 
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Polymerization of ubiquitin attached to a pre-existing 

protein typically arises by linking the carboxy-terminal 

glycine of ubiquitin to internal lysine of another ubiquitin, 

and regulates diverse biological processes, such as protein 

degradation, trafficking and signal transduction [6 - 8]. Among 

the various types of polyubiquitination chains, CYLD 

specifically binds ubiquitin chains linked by K63 and 

removes them from the target protein [9]. Since the 

K63-linked ubiquitin chain associates various 

non-degradative cell responses, such as cell signal 

transduction, CYLD is believed to play key roles in not only 

tumor cell-specific responses, but also in a multiple of 

biological responses including cell proliferation, survival, 

and inflammatory responses by regulating their specific cell 

signaling pathway [5].  

Roles of CYLD in inflammatory responses 

Although inflammation is primary response to hazardous 

stimuli and is a crucial part of the innate immune response 

acting to signal the host to any bodily insult, excessive 

inflammatory response is obviously harmful to the host, 

because of severe tissue damage [10-12]. To prevent 

detrimental excessive inflammatory response, the 

inflammatory signaling pathways must be tightly controlled.  

During evolution, the host has developed a variety of 

biological systems to avoid detrimental inflammatory 

response. Among such systems, negative feedback regulation 

is considered to play a crucial role in preventing overactive 

inflammation by strictly regulating the activation of the key 

receptor-dependent signaling adaptor molecules [13]. 

Among various cell signaling pathways, activation of 

NF-B, a primary mediator of inflammatory responses, plays 

key roles in regulating inflammatory and immune responses 
[14-16]. In addition to well-known roles that induction of IB 

plays in inhibiting the transient nature of NF-B activation, 

NF-B-dependent CYLD up-regulation that in turn leads to 

the inhibition of NF-B especially in more delayed or 

persistent phase in an auto-regulatory feedback manner [17]. 

In the NF-B regulatory signaling pathway, CYLD 

specifically targets and deubiquitinates the upstream kinase 

of IB, such as NEMO, TRAF2, TRAF6, TRAF7, TRIP, 

and TAK1, leading to its inactivation [2, 3, 4, 18-20]. Because the 

CYLD expression is itself under the control of NF-B 

activation, CYLD participates a negative feedback regulation 

of NF-B and is essential for ensuring the proper control of 

NF-κB activation in the transient and the delayed or 

persistent phases [17, 18]. Moreover, in review of all known 

shared signaling upstream transducers, TRAFs targeted by 

CYLD, have been shown to be critically involved in 

activation of not only NF-κB, but also various inflammatory 

signaling molecule, such as p38 mitogen-activated protein 

(MAP) kinase and c-jun N-terminal kinase (JNK) [18, 21-23]. 

Thus, controlled CYLD expression plays a critical roles in 

tight regulation of a wide variety of inflammatory response. 

Down-regulation of CYLD 

Over the past decade, based on its important roles in cell 

signaling regulation, a number of progress has been made for 

determining the biological functions of CYLD, by utilizing 

molecular biological tools to induce loss of CYLD function.  

Reiley et al. generated CYLD-deficient mice and reported 

that CYLD served as a positive regulator of proximal T cell 

receptor signaling in thymocytes by physical interaction with 

active Lck and promoted recruitment of active Lck to its 

substrate, Zap70 [24]. CYLD deficiency developed a tendency 

to chemically induced skin tumors caused by tumor 

formation and keratinocyte proliferation through 

overactivation of Bcl-3-Dependent NF-κB Signaling [25]. Lim 

et al. showed that, in CYLD-deficient mice, lung tissue 

exhibited increased leukocyte infiltration in response to 

bacterial infections compared to the wild-type (WT) mice [26, 

27]. Concurrently, CYLD-deficient mice also had 

up-regulated proinflammatory cytokines in response to 

Nontypeable Haemophilus influenzae [27]. Moreover, lack of 

CYLD caused the development of lung fibrosis in mice with 

Streptococcus pneumoniae infection [28]. CYLD suppressed 

transforming growth factor-β-signaling and prevented lung 

fibrosis by destabilizing Smad3 in an E3 ligase carboxy 

terminus of Hsc70-interacting protein-dependent manner, 

indicating a critical role for CYLD in tightly controlling the 

resolution of lung injury and preventing lung fibrosis [28]. 

These lines of evidence unveiled the precise biological roles 

of CYLD in a variety of diseases, and also implicated the 

potential possibility that malfunction of CYLD by loss of its 

expression, rather that its mutant, may trigger the various 

types of pathogenesis. 

In clinical, in addition to the multiple reports showing 

functional dysregulation of CYLD by various gene deletion 

or mutation, a growing body of evidence is accumulating to 

show that loss of CYLD expression can be observed in 

different types of human cancer. Hellerbrand et al. reported 

that functional relevant loss of CYLD expression contributed 

to tumor development and progression in human colon and 

hepatocellular carcinomas [29]. In malignant melanoma, 

down-regulation of CYLD expression by transcription factor 

Snail promotes tumor progression [30]. It should be noted that 

tumor thickness and progression-free and overall survival of 

patients with malignant melanoma inversely correlated with 

CYLD expression [30]. Moreover, increasing reports revealed 

that loss of CYLD expression presumably triggered the 

pathogenesis of various tumors by dysregulation of 
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biological responses, including cell proliferation, survival, 

and inflammatory responses [29 - 35]. 

Clinical significance of CYLD in glioblastoma 

Glioblastoma 

Glioblastoma multiforme (GBM), the most common 

primary tumor of the central nervous system in humans, has 

features of rapid and invasive growth in the brain [36]. Of the 

various types of glioma, GBM is the most frequent and 

aggressive, and characterized by highly malignant features. 

The median overall survival of patients with GBM who have 

standard and targeted therapies is still just more than 1 year, 

mostly because of resistance to therapy [37]. Due to their 

diffuse infiltrative features, most GBMs are not curable by 

resection, and they are extremely resistant to radiotherapy 

and/or chemotherapy. Those characteristics make GBMs 

extraordinarily lethal [38, 39]. Because few therapeutic targets 

are available for GBM, better understanding of the molecular 

mechanisms of GBM progression and therapy resistance is 

important. Recently, Song et al. have shown that, in 

malignant gliomas, CYLD reduction was found to be 

associated with glioma aggressiveness and the survival of 

patients with gliomas [40]. Moreover, Guo et al. reported the 

loss of CYLD expression in hypoxic regions of tissue 

specimens from GBMs [41]. 

Hypoxia-induced CYLD down-regulation is associated with 

the inflammatory microenvironment in GBM 

Hypoxic regions often occur in GBM, and increased tumor 

hypoxia is associated with the resistance to chemotherapy 

and radiation, and the poor prognosis of GBM patients [42]. 

Hypoxia, a characteristic and significant biological 

phenomenon of malignant tumors, frequently outpaces their 

blood supply [43]. The hypoxic microenvironment promotes 

invasion and treatment resistance of GBM cells, and 

glioma-initiating cells possess strong drug resistance and 

tumorigenicity [42, 44]. Given the well-established clinical 

relationship between increased hypoxia and GBM 

progression, targeting hypoxia-induced processes may be 

essential for developing successful treatment of GBM [42, 44, 

45]. Assessment of clinical GBM tissues and in vitro analysis 

revealed that CYLD expression was reduced under hypoxic 

conditions via transcriptional regulation in human GBM 

tissues [41]. As of this moment, transcriptional regulation of 

CYLD in tumors has yet to be determined.  Previous reports 

have shown that transcription of CYLD is directly 

suppressed by transcription factor Snail and Notch target 

Hes1, both of which are up-regulated and activated under 

hypoxic conditions [30, 46-48]. Hypoxia stimulates human 

papilloma virus-encoded E6 protein to promote 

ubiquitination and proteasomal degradation of CYLD in 

human papilloma virus-positive squamous cell carcinoma 

cell lines [49]. In addition, a number of studies showed that 

several microRNAs (miRNAs), endogenous small 

non-coding RNAs 19-24  nucleotide in length known to 

regulate gene expression, suppressed CYLD expression in 

multiple tumors [40, 50, 51]. Additional studies are needed to 

clarify the gene regulatory mechanism underlying the 

relationship between CYLD down-regulation and hypoxia. 

Inflammatory microenvironment, the seventh hallmark of 

cancer, generally promotes malignant progression [52]. 

Increasing evidence suggests the clinical significance of 

hypoxia-elicited inflammation in tumors [53]. As evidenced 

by the fact that various inflammatory cytokines promote the 

growth, survival, and invasion of GBM cells [54-56]. Increased 

Figure 1. Hypoxia suppresses CYLD expression to promote 
inflammation in glioblastoma. 
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expression of inflammatory cytokines including angiogenic 

mediators such as vascular endothelial growth factor (VEGF) 

has been associated with the poor prognosis of GBM [57, 58]. It 

is particularly worth noting that hypoxia promoted the 

activation of NF-B and involved in regulating the 

inflammatory microenvironment [59-62]. In fact, 

hypoxia-induced CYLD reduction was critical for 

inflammatory responses triggered by hypoxia in GBM, and 

strongly associated with GBM tumor progression including 

malignant transformation and drug resistance [41]. As stated, 

it is well-documented that CYLD acts as a negative regulator 

for NF-B signaling, a primary mediator of inflammatory 

responses [2-4]. Because TNF-α rapidly activates the NF-κB 

pathway [52], an excessive inflammatory response to the 

cytokine under hypoxic conditions may be due largely to 

CYLD down-regulation. Inhibition of several cytokine 

expression by CYLD in a hypoxia-specific manner, which 

indicated the presence of hypoxia-specific molecular 

mechanisms regulated by CYLD [41]. Taken together, 

hypoxia-induced CYLD reduction may promote 

inflammation in an autocrine and paracrine fashion in GBM 

tissues, which in turn leads to poor prognosis of GBM 

patients (Figure 1). 

Roles of CYLD in adaptive changes in GBM during 

anti-angiogenic therapy 

GBM is one of the most highly vascularized tumors and 

expresses high levels of VEGF, which is therefore an 

attractive target for anti-angiogenic therapies [63]. 

Bevacizumab, a humanized monoclonal antibody against 

VEGF, is approved for recurrent and newly diagnosed GBM 
[64]. Although clinical trials with bevacizumab produced 

impressive radiographic responses and prolongation of 

progression-free survival, GBM inevitably progresses within 

months [65], and the impact of this therapy on overall survival 

is still not clear [66, 67]. In view of basal tumor-promoting 

roles of hypoxia in GBM, recent studies suggest that 

prolonged anti-angiogenic treatment leads to tumors 

developing progressive hypoxia, which is thought to be 

critical for resistance to therapy [68, 69]. Guo et al. reported 

that chronic administration of bevacizumab, a monoclonal 

anti-VEGF antibody, induced expression of proinflammatory 

cytokines with massive infiltration of immune cells in GBM 

xenografts. Moreover, CYLD overexpression in GBM cells 

not only prevented those proinflammatory responses but also 

significantly improved the prosurvival effect of bevacizumab, 

which by itself had no impact on survival [41]. Since there 

was no apparent difference in basal vascularity, tumor 

growth, and anti-angiogenic efficacy itself by bevacizumab 

treatment, the prosurvival effect by CYLD overexpression 

may depend on modulation of phenotypic alterations 

occurring during bevacizumab treatment.   

Growing evidence implicate that anti-VEGF treatment has 

antitumor effects but simultaneously induces tumor 

adaptation and progression to greater malignancy, with 

increased invasiveness [65, 70]. Among high-grade gliomas, the 

mesenchymal type of GBM, characterized as having gene 

expression associated with tumor invasiveness, shows the 

worst prognosis with treatment resistance [71, 72]. Indeed, 

previous studies have shown that mesenchymal transition of 

GBM cells during chronic anti-VEGF treatment underlies a 

diffuse relapse, and the predominant biological process 

occurring during the transition was an inflammatory response 
[73-76]. Increased infiltration of myeloid cells reflected 

recurrence after anti-angiogenic therapy, and such an 

increased myeloid cell influx correlated strongly with the 

degree of tumor hypoxia [75, 77, 78]. In bevacizumab-treated 

xenograft GBM model, CYLD clearly prevented massive 

immune cell infiltration surrounding necrotic regions, and 

pseudopalisades, a characteristic feature of GBM that is 

currently thought to indicate tumor cells’ actively migrating 

away from central hypoxic areas [41].  Since the increased 

invasiveness of GBM cells during anti-VEGF therapy is 

likely due to an enhanced inflammatory milieu associated 

with hypoxia induction, inhibition of the GBM cell-derived 

inflammatory response by CYLD overexpression led to less 

aggressiveness, including invasion, and ultimately better 

survival (Figure 2). 

Figure 2. Roles of CYLD in adaptive changes in GBM during 
anti-angiogenic therapy. 
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Conclusions 

In addition to its critical clinical significance during tumor 

progression, dysregulation of CYLD by loss of its expression, 

rather that its mutant, may be involved in the various types of 

pathogenesis. A series of evidence suggests that loss of 

CYLD expression is deeply associated with a wide variety of 

diseases, including malignant tumors, inflammatory diseases, 

infectious diseases, lung fibrosis, neural development, and 

cardiovascular dysfunction [79-85]. In this review, we 

described the clinical significance of CYLD, particularly 

focusing on the roles of CYLD as a critical regulator of 

hypoxia-mediated inflammation in GBM, which may affect 

the long-term efficacy of anti-VEGF therapy. Elucidating the 

mechanisms linking hypoxia-induced CYLD 

down-regulation and inflammation, and adaptive changes in 

GBM tissues during anti-VEGF therapy, may provide 

insights into GBM pathobiology and development of more 

effective therapeutic approaches to GBM. Recently, Komatsu 

et al. reported that Rolipram, a selective inhibitor for 

phosphodiesterase 4B (PDE4B), enhanced up-regulation of 

CYLD expression [86]. This finding suggests that 

up-regulating the CYLD expression may also have the 

potential to be promising therapeutic strategies for tumors as 

the low CYLD expression level has been reported to have an 

crucial role in the development of tumors in patients [86].  

Thus, deeper understanding of more biological features and 

clinical significance of CYLD may not only bring new 

insights into the pathogenesis of tumors, but may also open 

up novel therapeutic strategies for a wide variety of diseases. 
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