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Prostaglandins (PGs) are necessary for normal female reproduction. PGs act via their respective receptors 

and execute various functions in their target tissues depending on which type of receptor being activated. 

PG receptors are G-protein coupled receptors mediating various vital processes in the uterus throughout 

the reproductive cycle and pregnancy. They are essential for the normal functioning of uterine 

endometrium, myometrium and cervix. In this mini review, we explore the expression, functions and 

regulations of EP1-4 and FP in uterus. Recent reports show that PG receptors are regulated spatio-

temporally in endometrium throughout the reproductive cycle. In myometrium, EPs and FP are 

differentially expressed and have prominent roles in the contraction and relaxation of the smooth muscle. 

In the cervix, PG receptors are essential for normal cervical ripening. PG receptors are important in 

several reproductive functions including reproductive cyclicity, embryo implantation, embryo spacing, 

uterine contraction or relaxation, and cervical ripening. Flawed regulation or signaling by PG receptors 

lead to many pathological conditions of the female reproductive tract such as dysmenorrhea, menorrhagia, 

endometriosis, cancer and pre-term or post-term pregnancies. Although several studies have shown the 

expression of PG receptors in different cell types of the uterus, we still do not fully understand their 

functions in different cell types, how they are regulated and their implications in normal health and 

diseases. Better understanding of the PG receptor signaling mechanism would offer valuable insight that 

could be used for diagnosis and therapy. 
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Introduction 

Prostaglandins (PGs) are found ubiquitously and are 

locally produced in most nucleated cells. They are small 

hormone-like lipids with autocrine and paracrine functions 

and they maintain local homeostasis in the body [1]. PGs 

are synthesized from arachidonic acid by cyclooxygenases 

and prostanoid synthases (Figure 1). There are four major 

bioactive PGs produced in vivo: prostaglandin E2 (PGE2), 

prostacyclin (PGI2), prostaglandin D2 (PGD2) and 
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prostaglandin F2α (PGF2α) [1]. They exert their effects by 

binding to specific G protein-coupled receptors thereby 

activating intracellular signaling and gene transcription [2]. 

The prostanoid receptor subfamily consists of eight 

members: E prostanoid receptor (EP) 1, EP2, EP3 and EP4 

subtypes of the PGE receptor; PGF receptor (FP); PGD 

receptor (DP1); PGI receptor (IP); and thromboxane 

receptor (TP) [1]. These receptors have distinct 

biochemical properties, localization and differential 

affinity to ligands [3].  The signaling mechanisms of PGs 

are different when transduced via different receptors. EP1 

signaling is coupled to Ca2+ mobilization [4]. EP2 and EP4 

trigger the stimulation of adenylyl cyclase, whereas 

activation of EP3 inhibits adenylyl cyclase [5]. The FP 

receptor triggers stimulation of phospholipase C-inositol 

triphosphate as well as Ca2+ mobilization [5,6]. In this 

review we will focus on the roles of EP1-4 (also denoted 

PTGER1-4) and FP (PTGFR) in the uterus. 

PGs are key molecules in reproductive biology, 

regulating various reproductive processes including 

ovulation, endometrial regulation, menstruation and 

parturition. The uterus is fundamental for the survival of 

the species of viviparous animals. Implantation of 

fertilized eggs in the endometrium is a critical event in 

these species. The endometrium undergoes well defined 

cycles, anticipating the embryo, in preparation for 

implantation. These cycles of proliferation, differentiation, 

degradation and menstruation are finely tuned by the 

endocrine and paracrine environment involving PGs [7-9]. 

Recent studies show that PGs are essential during 

implantation and PG receptors facilitate embryo adhesion 
[10]. PGE2 and PGF2α acts in a temporal and cell-specific 

manner via its different receptors around the time of 

implantation and are important for blastocyst spacing, 

implantation and decidualization in mouse endometrium 
[6]. During parturition the myometrium is active in 

expelling the fetus and PGs are important for proper labor 

and ripening of the cervix to occur [8,11,12]. 

The important role of PGs in uterine function was 

initially discovered over half a century ago [13-16]. 

Numerous studies have been performed ever since to show 

their various functions and signaling mechanisms in 

different uterine cell types. As early as 1976, Schillinger 

and Prior published evidence for the presence of specific 

binding sites for PGE2 and PGF2α by doing saturation 

analyses in human uterine tissues [17]. Several studies were 

performed in the 1980s to show binding sites for PGE2 and 

PGF2α in different uterine cell types and how they changed 

throughout the menstrual cycle [18,19]. After the cloning and 

characterizations of PG receptors in the 1990s plenty of 

work has been done on their structure, function and gene 

regulations [4,20,21]. Although PGs are widely used to 

induce cervical ripening, for labor induction and for 

termination of pregnancy [22,23], the cell specific 

expressions of different PG receptors in the uterus was not 

known until recently. The objective of this review is to 

compile data on the expression and roles of EP1-4 and FP 

receptors in endometrium, myometrium and cervix. 

Prostaglandin receptors in endometrium 

The endometrium consists of luminal and glandular 

epithelium, stromal tissue and blood vessels. It undergoes 

constant remodeling throughout the reproductive cycle in 

the non-pregnant uterus preparing itself for embryo 

implantation. Upon implantation, the endometrium 

proliferates and supports the fetus, but in the absence of 

implantation endometrial lining is shed and a new cycle 

begins. This cycle is regulated by the sex steroid hormones 

estradiol (E2) and progesterone (P4) and these hormones 

modulate the expression of PG receptors like EPs and FP. 

The receptors, when activated by their specific ligands, are 

essential for many vital functions in the endometrium. 

EPs and FP are expressed in a cell-specific and temporal 

fashion during the peri-implantation period and 

decidualization in mice [24-27]. Progesterone has been 

shown to upregulate the expression of EP2 and E2 further 

Figure 1. Synthesis of prostaglandins PGE2 and PGF2α and their 

respective receptors. Arachidonic acid is processed by the 

cyclooxygenase (COX) enzymes (COX-1 and COX-2) to form an 

intermediary precursor, prostaglandin G2 (PGG2). It is then converted 

to prostaglandin H2 (PGH2) by the peroxidase enzyme. PGE2 and 

PGF2α are derived from PGH2 by the action of their specific 

isomerases. PGE2 binds to its receptors EP1, EP2, EP3 and EP4 

whereas PGF2α binds to the FP receptor.  
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enhances EP2 expression; while E2 alone suppresses the 

expression [26]. EP2 mRNA expression is increased during 

pregnancy in the rat and the level decreases during labor 

and after delivery, suggesting the likely contribution of P4 

in the regulation of EP2. Furthermore, P4 has been found 

to upregulate EP2 mRNA in the uterus of the 

ovariectomized rat [28]. Recently we showed the expression 

of EP1-4 and FP in different cell types of the rat uterus and 

how the expression differed  between various types of 

cells and treatments [29]. The mRNA expression of EPs and 

FP was decreased by E2 treatment and the estrogen 

receptor (ER)α selective agonist PPT, but by the ERβ 

selective agonist DPN only expression of EP2 and EP4 

was downregulated. However, E2 treatment increased the 

protein levels of EP2 and EP3. When treated with a 

combination of E2 and P4, expression of EP1 and EP3 was 

upregulated [29]. Thus, expression EP1, EP3 and FP is 

regulated by E2 mainly via ERα, whereas EP2 and EP4 are 

also modulated by the ERβ specific ligand.  

Immunohistochemical analyses showed that PG 

receptors are regulated by ovarian steroids in a cell type 

specific way. E2 upregulated EP2, but EP1 and EP3 were 

upregulated when co-treated with E2 and P4. These 

observations indicate that E2 and P4 regulate EPs and FP 

in a receptor and tissue specific manner [29]. 

PGE2 facilitates the uterine preparation for implantation 

in the endometrium and  this process seem to be mediated 

by EP3 and EP4 subtypes in epithelial cell differentiation, 

stromal cell proliferation, uterine edema, luminal closure 

and increased vascular permeability at blastocyst 

attachment sites [6]. An investigation on human 

endometrial tissue displayed the expression of PG 

receptors to vary during the menstrual cycle in a stage 

specific fashion with FP increasing during the proliferative 

phase, EP1 dominating in the early-secretory phase and 

EP2, EP3 and EP4 dominating in the mid-secretory phase 
[30].  These observations suggest that E2 and P4 may 

regulate the expression of endometrial EPs and FP, and 

that these receptors have specific functions in the 

respective reproductive phase. EP1 transcripts were found 

in human endometrium using a microarray technique in 

early and mid-secretary phase, with higher expression in 

the mid-secretary phase [31]. Further, 

immunohistochemical analyses showed a strong signal for 

EP1 in the luminal and glandular epithelium [31]. These 

data suggests that the EP1 receptor could be important at 

the time of implantation. Another study showed that peak 

expression of EP1 is found during the early secretory 

phase and that the EP1 protein is present in luminal and 

glandular epithelium [30]. Further, EP1 is localized to the 

nuclear region of glandular epithelium during 

proliferative, early secretory and menstrual phases but it is 

localized in the apical plasma membrane during mid- and 

late secretory phases [30]. This suggests the possibility that 

EP1 may have different functions due to its spatial (nuclear 

vs. cell membrane) and temporal (proliferative vs. 

secretory) expression [30]. In human endometrium 

expression of EP1, EP2 and EP3 peaked in the mid-

secretory phase concurrent with increased stromal edema, 

endometrial blood flow and blood vessel permeability [30]. 

EP4 has been shown to stimulate the proliferation of 

glandular epithelial cells during the proliferative phase of 

the menstrual cycle in an ERK1/2- dependent fashion [32]. 

Studies in sheep showed that early pregnancy, as well as 

interferon Tau, induces EP2 and EP4 expression in the 

endometrium. This suggests that EP2 and EP4 are 

additively mediating PGE2 signaling in ovine 

endometrium [33]. These results also indicate a role for EP2 

and EP4 in the normal endometrium and in establishing 

pregnancy. EP3 is involved in the stromal cell proliferation 

by activating fibroblast growth factor-9 [34]. In human 

endometrium FP receptors are expressed predominantly in 

glandular epithelium, stromal and perivascular cells, 

showing increased expression in the proliferative stage of 

the menstrual cycle [35]. FP is the dominant subtype during 

the proliferative phase in the endometrium [30].  It was 

reported that the epithelial proliferation induced by PGF2α 

is mediated by the phospholipase C signaling pathway [35]. 

Ligand activated FP receptors induce changes in epithelial 

cell morphology and migration, cell proliferation and 

angiogenesis [36-38]. We also studied the hormonal effects 

on cyclooxygenase (COX) proteins in the macaque uterus 
[39]. COX-1 and COX-2 convert arachidonic acid to PGH2, 

a precursor for prostanoid synthesis. Constitutively 

expressed COX-1 and inducible COX-2 regulate the 

synthesis of PGs [40]. We found that COX-1 

immunostaining decreases after treatment with tamoxifen 

(estrogen agonist in the uterus) or conjugated equine 

estrogens (CEE) in the endometrial stroma. COX-2 

immunostaining in the endometrial stroma is upregulated 

by combined CEE and P4 treatment, as compared to 

untreated ovariectomized animals [39]. In glandular 

epithelium the combined treatment with E2 and P4 

increases COX-2 immunostaining as compared to E2 

alone or no treatment. Thus, our results indicate that, in the 

uterus of ovariectomized macaques, COX-1 and COX-2 

are differently distributed, hormonally regulated, and 

COX-1 immunostaining is more prominent than COX-2. 

Taken together, PGs and their receptors EP1-4 and FP are 

essential for the normal function of the endometrium and 

PGs, their receptors as well as their cyclooxygenases are 



Receptors & Clinical Investigation 2014; 1: e115. doi:10.14800/rci.115; © 2014 by Chellakkan Selvanesan Blesson, et al. 

http://www.smartscitech.com/index.php/rci 
 

Page 4 of 10 
 

regulated by the sex steroid hormones E2 and P4. 

Prostaglandins, COX enzymes, PG receptors and 

downstream signaling pathways are involved in 

angiogenesis, cell adhesion, morphology, motility, 

invasion, vascular permeability and metastasis. Abnormal 

distribution, function and downstream signaling of PG 

receptors lead to several pathological conditions in the 

female reproductive tract including dysmenorrhea, 

menorrhagia, endometriosis and cancer. The possible role 

of PG receptors in disorders of the endometrium could be 

of importance for development of therapeutic 

interventions in the future [41]. 

Smith et al. found a significant increase of endometrial 

COX-1 and COX-2 mRNAs in women with heavy 

menstrual bleedings [42]. Furthermore, in the endometrium 

of these women, PGE2 stimulation caused an increased 

production of cyclic AMP when compared to women with 

normal bleeding [42]. These results imply that EPs are 

involved in heavy menstrual bleedings and their signaling 

pathways could be exploited potential therapeutic targets 

in the treatment of heavy menstruations.  

The COX pathway is known to be an important factor 

in tumor development in humans, enhancing both 

synthesis and signaling of PGE2. Studies have reported 

that endometrial carcinomas show higher PGE2 synthesis 

and secretion, as well as increased expression and 

signaling of EP receptors [43-45]. Further, in endometrial 

adenocarcinomas a significant upregulation was found in 

the synthesis and signaling of the FP receptor suggesting a 

possible involvement in enhanced proliferation of 

epithelial cells [35]. Expression of COX-2 and biosynthesis 

of PGE2 are higher in endometrial adenocarcinomas, but 

the mechanism whereby they regulate endometrial tumor 

growth is not clear. Catalano et al. compared EP receptor 

expression in endometrial adenocarcinomas with normal 

endometrium. They found increased expression of EP4 

and a decrease of EP1 and EP3 in the carcinomas as 

compared to normal endometrium [46]. In nude mice 

grafted with Ishikawa cells and stably transfected with 

EP4, tumor growth was enhanced along with increased 

expression of COX-2, when compared to wild type 

xenografts [46]. The results from this study clearly suggest 

a role of EP4 in tumor development of the endometrium. 

Several studies have shown a role of PGs in 

endometriosis [47-51]. The significance of PGE2 in 

endometriosis is well documented and reviewed by Sacco 

et al and Wu et al [52,53]. These studies clearly show that 

EP receptors are involved in endometriosis. Recent studies 

show that inhibition of EP2 and EP4 signaling decreases 

the migration of human endometriotic epithelial and 

stromal cells via multiple mechanisms involving matrix 

metalloproteinases (MMPs) [54]. Further, they also show 

that inhibition of EP2 and EP4 decreases integrin signaling 

and activates intrinsic apoptotic mechanisms [55,56]. 

Although the exact mechanisms are not known, 

microarray studies have shown that EP3 down regulation 

also plays a role in endometriosis [57,58].  

Prostaglandin receptors in myometrium 

PGs are important for the initiation and maintenance of 

labor. Elevated uterine PG levels or increased sensitivity 

to PGs in the myometrium lead to contractions and labor 
[59].  PG receptors EP1-4 and FP have been localized in 

uterine smooth muscle cells and their role in normal labor 

is well documented [6,60-63]. The response to PGs in the 

myometrium may be defined by the type and amount of 

the receptor expressed [64]. Contractility of myometrium is 

mediated by EP1, EP3 and FP, whereas EP2 and EP4 

mediate relaxation [65]. These receptors mediate 

contractility and relaxation of smooth muscle cells via 

different signaling pathways [2]. Pathological expression 

and signaling have been shown to result in preterm labor 
[59].  

PG receptors play various roles in myometrium around 

the time of embryo implantation in mice. Yang et al. 

showed that PGE2 and PGF2α receptor genes are expressed 

in a temporal and cell-specific manner in the mouse uterus 

during the peri-implantation period [6]. Expression of EP3 

and FP is primarily localized to the myometrial circular 

muscles on days 3 to 5 of pregnancy indicating the circular 

muscle layer to be the major target for PG-mediated 

uterine contractions essential for embryo transport, 

spacing, and implantation [6].  

Grigsby et al. investigated if the change from 

quiescence to contractility in the uterus could depend on 

different expression of PG receptors within the 

myometrium. They examined paired upper and lower 

segment myometrium for the localization and expression 

of EP1-4 and FP throughout human pregnancy [61]. They 

found that all receptor subtypes are present in all 

myometrial layers, but an alteration in intracellular 

localization at term labor, when EP1 and EP4 are 

predominantly located in the nucleus. No changes were 

observed in the expression of PG receptor subtypes in 

connection to gestational age, labor, or between the upper 

and lower segments. The authors conclude that 

myometrial activation via the PG receptors might be 

defined by the balance between the PG receptor subtypes 

in addition to other proteins associated to contraction [61]. 
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Further, differential distribution of PG receptor subtypes 

in different regions of the uterus appears to facilitate 

relaxation of the lower reproductive tract while 

simultaneously contracting fundal myometrium [66]. The 

mRNA expression of EPs and FP did not show any 

gestational age related changes. However, regional 

localization of the receptors varied with higher mRNA 

expression of myometrial EP1 and EP3 in fundus when 

compared to the lower segment, whereas expression of 

EP2 is lower in fundus [60]. Labor is associated with a 

decrease in regional variation of EP2 and an overall lower 

EP2 expression, but not with the expression of EP1 and 

EP3. Thus, regional and labor-related variation of PG 

receptor expression in the myometrium may be crucial for 

parturition in primates [60]. 

Abnormal PG signaling has been implicated in pre-term 

labor [59,67]. The FP receptor is associated with labor at 

term and it is known to cause myometrial contractions in 

contrast to EP2 which maintains uterine quiescence [68]. 

The balance between the two receptor isoforms might be 

responsible for myometrial contractility [68]. A recent study 

showed that PGF2α regulates uterine activation via various 

proteins like connexin-43, EP2, oxytocin receptor and FP 

expression in myometrial cells from both upper and lower 

segments leading to uterine activation for the onset of 

labor [69]. 

Knowledge on the role of PGs and their receptors in 

labor gave ample clues to use them as a target to treat pre-

term labor. Olson and Ammann presented results on the 

role of PGs and their receptor inhibitors to treat preterm 

labor [59]. They showed that COX-2, a regulator of PG 

synthesis, could be a potential therapeutic target for the 

prevention of preterm labor. However, non-steroidal anti-

inflammatory drugs which inhibit COX enzymes and 

suppress preterm labor in animals cannot be used due to its 

adverse effects on the development of the fetus. Using a 

novel FP antagonist, THG-113.31, the authors showed 

that, in mice and sheep, preterm birth can be delayed 

without any maternal or fetal side effects, offering hope for 

counteracting preterm birth [59]. Another FP antagonist, 

AS604872, was shown to reduce spontaneous uterine 

contractions in a dose-dependent fashion in late-term 

pregnant rats [70]. Further, in pregnant mice the antagonist 

delayed preterm birth caused by the administration of 

RU486 [70]. Thus, a selective FP antagonist might one day 

be used for treating preterm labor in a subset of patients 

with uterine hyperactivity [70]. 

Prostaglandin receptors in cervix 

Cervix is the uterine neck and acts as a sphincter of the 

uterus. It undergoes changes throughout the reproductive 

cycle and pregnancy. During pregnancy the cervix 

functions as a protective barrier from attacking pathogens 

and as a physical barrier to keep the fetus in the uterus until 

parturition [71]. Towards the end of pregnancy the cervix 

becomes softer and more pliable to allow passage of the 

fetus, by a process known as cervical ripening. Cervical 

remodeling occurs in various stages including softening, 

ripening, dilation and repair with distinct regulations for 

each process [71]. Disorders of cervical remodeling cause 

serious pregnancy complications. Pathological regulation 

of cervical remodeling leads to preterm or post-term labor. 

Cervical incompetence or an early softening and dilatation 

result in preterm birth, while inadequate ripening of the 

cervix at term may lead to dysfunctional labor [72]. 

PGs play important roles in cervical ripening and labor 

induction [72-77]. Their involvement is firmly established at 

the later phases of cervical remodeling, when there is an 

inflammatory-like reaction in the ripening cervix [72]. 

PGE2 increases the concentration of glycosaminoglycan 

and the activity of elastin contributing to cervical ripening 
[78]. Further, it has also been suggested that PGE2 regulates 

the synthesis of glycosaminoglycan [79], which has been 

shown to induce cervical ripening by remodeling the 

extracellular matrix by dispersing and separating the 

collagen bundles [80]. Our earlier studies showed that 

MMPs are vital for cervical ripening [81,82]. The presence 

of PG receptors in cervix has been reported in humans, 

baboons, rodents and goats [12,83-87]. In the estrus stage of 

ewes, cervical relaxation is regulated by alterations in PG 

synthesis and changes in the extracellular matrix of the 

cervix [79,88,89]. Wu et al. showed by in situ hybridization 

and northern blot that uterine segments from pregnant 

baboons exhibit a gradient in COX-2 mRNA expression. 

The highest levels were found in lower cervix and the 

expression decreases in the mid- and upper part of the 

cervix and lower uterine segment, with the lowest level 

seen in uterine fundus [90,91]. Another study showed that E2 

regulates cervical levels of COX-2 and EP4 mRNAs and 

may via the synthesis of PGE2 regulate cervical relaxation 

as well as activation of EP2 and EP4 receptors [92]. This 

study is in agreement with our results from the rat uterus 

where EP2 was found to be regulated by E2 [29]. Increased 

local production of PGs may be important for pregnancy-

associated elongation of the lower uterine segment, 

cervical softening and effacement in primate labor [90]. 

These studies show that changes in the lower uterine 

segment and cervix before the onset of labor is regulated 

in a synchronous fashion with changes in the myometrium. 

In pregnant baboons, the expression of EP1 increased with 
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advancing gestational age prior to labor [12]. However, EP2 

and EP4 expressions are down regulated  4- and 2- folds 

respectively, in animals in labor when compared to those 

not in labor, indicating that variations in relative 

expression of PG receptor types could be of importance in 

cervical dilatation during primate parturition [12]. 

PGs are widely used to induce cervical ripening for 

labor induction and for terminations of pregnancies [22,23]. 

Since the late 1970s, vaginal and intra-cervical application 

PGs and its synthetic analogs have been shown to induce 

cervical ripening and onset of labor [93,94].  

Since the PGs have a ripening effect on the cervix, we 

studied the expression and localization of PG receptors 

EP1-4 and FP. Recently we showed the presence of PG 

receptors in the cervix of non-pregnant (NP), term 

pregnant (TP) and post-partum (PP) women and their 

variable expression in NP, TP and PP states and different 

cell types [87].  We hypothesized that expression of 

cervical PG receptors may be different in TP, PP and NP 

women [87]. We showed that the levels of EP1-4 and FP 

varied between the NP, TP and PP states and between 

different cell types [87]. Our data showed that EP2 and EP4 

mRNA levels are at their lowest in the TP group. Thus, 

expressions of both the smooth muscle relaxing EPs are at 

their lowest levels in pregnancy, before the final ripening 

has started. The relaxatory action by smooth muscle cells, 

together with the timed action of tissue remodeling 

enzymes, could lead to cervical ripening. The absence of 

regulation of the contraction inducing PG receptors 

mRNA and protein levels in most of the cell types, suggest 

that they may not play any active role in the cervical 

ripening process. Similar observations and conclusions 

have been made in rats [83]. 

Although PGE2 is widely used to induce cervical 

ripening, in a subset of women with post-term pregnancies 

PGE2 fails to induce cervical ripening and labor, leading 

to delivery by caesarean section [95]. In order to identify the 

reasons for such different responses, we undertook a series 

of studies to identify the factors that are differentially 

expressed between the two groups. We demonstrated that 

in TP women, PGE2 induced cervical ripening showed 

higher collagen concentration in the cervix when 

compared to women undergoing spontaneous cervical 

ripening, showing that the PG induced ripening process is 

not identical to the spontaneous process [96]. Further, 

glutaredoxin, a member of the thioredoxin superfamily, 

was 3-fold more expressed in cervix from PGE2-treated 

women when compared with women undergoing 

spontaneous cervical ripening and delivery [97]. These 

results indicate that glutaredoxin could have a role in the 

regulation of cervical ripening in humans and that it is 

regulated by PG treatment [97]. In another study we found 

that a post-term group responding to PGE2 priming 

displays lower total progesterone receptor (PR) and 

androgen receptor (AR) levels compared with non-

responders of PGE2 treatment, and decreased PR-B and 

AR protein levels when compared with controls, i.e. 

women who underwent spontaneous cervical ripening. 

Also the PR mRNA level is decreased in responders when 

compared with non-responders [98]. When examining 

COX-1 and COX-2 proteins levels by 

immunohistochemical analyses in the cervix of post term 

women, responding or not responding to PG priming for 

labor induction, we found no differences between the 

groups [98]. This could be due to oxytocin treatment, since 

oxytocin can initiate COX-2 gene transcription in human 

myometrial cells in vitro [99]. In addition, mechanical 

stretch also induces COX-2 activity. We also found that 

the influx of leukocytes is strongest in the responders to 

PG treatment, followed by the controls with spontaneous 

parturition at term and the influx was significantly lower 

in the non-responders [95]. We concluded that in 

responders, PGE2 priming is followed by a functional 

progesterone and androgen withdrawal at the receptor 

level and an influx of leukocytes. Impaired leukocyte 

influx in post term women not responding to PGE2 

treatment could be one explanation of the failed cervical 

ripening.   

In order to increase knowledge of the function of PG 

receptors in cervical ripening we recently investigated the 

expression and localization of PG receptors in post-term 

human cervix, after failed or successful induction of labor 

with PGE2. We found that expression of EP4 mRNA was 

downregulated simultaneously with an upregulation of 

EP3 mRNA levels in the cervix from non-responders when 

compared with responders. In stroma, EP4 

immunoreactivity was higher in non-responders when 

compared with responders [100]. We concluded that lack of 

cervical ripening, after local treatment of PGs for labor 

induction, could be due to the higher expression of EP3 

simultaneously with decreased EP4 expression. 

Conclusions 

PG receptors play many vital roles in the endometrium, 

myometrium and cervix. Their differential roles in the 

reproductive cycle and pregnancy are still not clearly 

understood. Only a handful of studies have been 

performed showing their spatio-temporal expression in the 

human uterus. We still do not know their functions in 
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different cell types, how they are regulated and their full 

implications in normal health and disease. Although plenty 

of studies have been done on PG synthesis, secretion and 

the role of various enzymes in their conversions, we have 

not yet fully understood the role of PG receptors, their 

regulation and molecular mechanisms. 
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