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Recent literature corroborates that both, genes and environment, are crucial determinants contributing to 

psychiatric disorders. The selectively bred mouse models of anxiety-related behavior provide a great 

opportunity to investigate the interaction of a rigid genetic predisposition with environmental factors and are 

used to identify targets contributing to pathological anxiety. Here, we studied gene × environment (G×E) 

interactions using a mouse model of high (HAB) vs. low (LAB) anxiety-related behavior. By applying enriched 

environment (EE) and chronic mild stress (CMS), we succeeded in shifting the phenotypes of HAB and LAB 

mice towards “normal” anxiety. In this bidirectional shift, Crhr1 was identified as a key player. Increased 

methylation of CpG1 within the Crhr1 promoter region was shown to be critically involved in regulating the 

binding affinity of the transcription factor Ying-Yang 1 (YY1). The interplay between YY1 expression and DNA 

methylation might be the mechanism underlying the differences in Crhr1 expression after EE and CMS. Other 

epigenetic mechanisms contributing to Crhr1 expression are discussed here. 

Keywords: G×E; anxiety; stress; enriched environment; epigenetics; Crhr1; YY1; methylation; microRNA; histone 

modification 

To cite this article: Sergey V. Sotnikov, et al. Epigenetic regulation of corticotropin-releasing hormone receptor 1: 

implication for anxiety-related disorders. Receptor Clin Invest 2014; 1: e175. doi: 10.14800/rci.175. 

Copyright: © 2014 The Authors. Licensed under a Creative Commons Attribution 4.0 International License which allows 

users including authors of articles to copy and redistribute the material in any medium or format, in addition to remix, 

transform, and build upon the material for any purpose, even commercially, as long as the author and original source are 

properly cited or credited. 

 

Successful attempts to constructively leverage adv- 

ances of the recent years in understanding the nature of 

psychiatric disorders depend upon our ability to merge 

genetic and environmental factors in their etiology [1]. 

Indeed, the discovery of epigenetic mechanisms in the 

development of psychiatric diseases has changed the view 

of causality from genocentric towards gene × environment 

(G×E) interactions [2, 3]. Recent data indicate that 

epigenetics is the most important but largely 

uninvestigated field linking disease, environment and 

genetics [4].  

Epigenetic modifications allow organisms to adapt to 

current environmental conditions through a dynamic 

regulation of their gene expression which is not mediated 

by changes in DNA sequence. Methylation, histone 

modification and non-coding RNA are the best understood 

examples of epigenetic instruments. Although the mode of 

interaction between these mechanisms is not completely 

known, it is likely that these processes are not independent 
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of each other [5]. Reasonably, rather than identifying 

merely genetic causes of psychiatric diseases, clinicians 

may broaden their “therapeutic toolbox” by shifting their 

focus on epigenetic mechanisms which predict or 

potentially prevent negative outcomes of GxE interactions. 

One should bear in mind that genetic manipulations of a 

patient’s background is a priori difficult to perform or 

impossible due to ethical reasons and potentially delicate 

consequences.  

Recent literature supports the important role of animal 

models to unravel G×E interactions. However, many 

studies consider only detrimental environmental effects, 

whereas the absence of adversity is considered as the 

“good” end of the environmental continuum [6]. 

Subsequently, such studies ignore the positive effects of 

environmental factors, and, therefore, fail to measure the 

multi-faceted range of psychological and behavioral 

reactions. By using a bidirectional approach to study the 

role of G×E interactions in the development of extremely 

high (HAB) or low (LAB) anxiety-related behavior of 

mice we have tried to avoid this bias [7]. In order to shift 

these extreme anxiety-related behaviors towards the 

“normal” range of the anxiety continuum [8], LAB mice 

were exposed to chronic mild stress (CMS) (adverse 

environment), whereas enriched environment (EE) 

provided improved housing conditions for HAB mice 

(beneficial environment) (Fig 1). We were able to show 

that even genetically determined anxiety-related behavior 

can be shifted from the extremes of the anxiety continuum 

via exposure to CMS or EE, respectively, thereby rescuing 

“normal” behavior.   

The hyperactivity of the CRH system during stress 

exposure has been extensively studied in the etiology of 

anxiety and depression [9, 10]. Thus, it was shown that acute 

stress increases CRH in the central amygdala [11]. The later 

diffuse of CRH in the BlA [11, 12] might activate the CRH 

receptor 1 there and, thereby, cause alterations in anxiety-

related behavior. A critical role of the amygdala in the 

observed phenotypic changes after EE and CMS was 

suggested in our recent studies [13, 14], which encouraged us 

to further investigate the involvement of distinct CRH 

system components in our mouse model. HABs display 

high anxiety-related behavior in a variety of tests [15]. One 

underlying rationale might be a higher expression of Crhr1 

in the BlA compared to LABs. EE was indeed capable of 

decreasing this difference in Crhr1 receptor expression, 

whereas the opposite effect on gene expression was 

observed in LABs exposed to CMS.  

Earlier studies reported that the effects of early life 

stress on Crh expression can be mediated via changes in 

DNA methylation of its promoter [16, 17]. Similarly, we 

observed changes in Crhr1 promoter methylation; 

Figure 1. Conceptual framework and behavioral effects of environmental modifications. Chronic mild stress (CMS) 
induced an anxiogenic effect in low anxiety-related behavior (LAB) mice shifting their phenotype toward “normality”. 
Similarly, enriched environment (EE) rescued the inborn phenotype of high anxiety-related behavior (HAB) mice. 

 

Figure 2. Binding of transcription factor Ying-Yang 1 (YY1) to 
the Crhr1 promoter enhances its activity. Methylation of CpG1 
significantly reduced binding affinity of YY1 and, thereby, decreased 

YY1-induced promoter activity. 
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surprisingly, both EE and CMS increased the methylation 

of the first CpG dinucleotide in the promoter region 

(CpG1). This CpG site is located close to a binding site of 

the transcription factor Ying-Yang 1 (YY1) shown to 

regulate promoter activity of several genes in a 

methylation-dependent [18,19] and -independent [20, 21] 

manner. Here, YY1 enhanced Crhr1 promoter activity and 

mRNA expression, whereas CpG1 methylation 

significantly reduced the binding affinity of YY1, thus 

causing decreased Crhr1 promoter activity (Fig. 2). We 

hypothesized that increased CpG1 methylation and 

decreased YY1 expression, as observed after EE, could 

mediate lower expression of Crhr1, whereas increased 

CpG1 methylation might prevent the CRH system from 

YY1-induced Crhr1 over-expression and, thereby, might 

play a stress-protective role in LABs.  

Our research group is working to uncover other 

epigenetic mechanisms contributing to Crhr1 gene 

expression. Recently, it was found that chronic and acute 

stress induce expression of several microRNAs (miRNA) 

in the CeA, among others miRNA-34c [22]. The miRNAs 

of this family could down-regulate Crhr1 expression via 

binding to the 3’UTR and, consequently, effect anxiety- 

related behavior. Our data support these results, since 

expression of miR-34a in the BlA was found to be higher 

in LAB compared to HAB mice [23]. Interestingly, 

systematic proteome analysis, performed by Chen et al. 
[24], demonstrated that miR-34a can down-regulate YY1 

through binding to a specific recognition sequence in the 

3’UTR region. These data indicate that both Crhr1 and 

YY1 seem to be regulated by miR-34a (Fig. 3), which 

predisposes this miRNA as a promising candidate for drug 

discovery.  

As mentioned earlier, there is a close interaction 

between different epigenetic mechanisms. Thus, binding 

of YY1 attracts other co-factors which control 

accessibility of DNA for the transcription machinery. The 

HDAC2/1 complex was found to be one of them [25, 26] and 

suggests a possible involvement of histone modifications 

in the regulation of Crhr1 expression. The available ChIP-

seq data (Ensemble Genome Browser) on embryonic stem 

cells suggest that the Crhr1 promoter might be a critical 

site for histone modifications (Fig. 4A). Indeed, treatment 

of neuro-2a neuroblastoma cells with valproic acid, a well-

Figure 3. An evolutionary conserved binding site for the miRNA34 family. Using 
TargetScan (http://targetscan. org) a recognition sequence for miRNA34 family was found 
on the Crhr1-3’UTR and YY1-3’UTR. 
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known histone deacetylase inhibitor (HDACi), 

anticonvulsant and mood-stabilizer, induced a significant 

increase of both Crhr1 promoter activity (Fig. 4B) and 

mRNA expression [23]. Recent experiments in our group 
[27] suggest a mild anxiolytic effect of valproic acid in HAB 

mice when applied chronically, highlighting its therapeutic 

potential to treat anxiety disorders.  

Altogether, using a mouse model of pathological 

anxiety, we succeeded in showing that epigenetic 

processes triggered by detrimental or beneficial 

environmental stimuli are able to rescue genetically 

determined extreme anxiety-related behavior. In 

particular, we were able to demonstrate an involvement of 

CpG1 methylation in the regulation of Crhr1. However, an 

additional involvement of histone modification and 

miRNA is likely as well, thus creating the probability for 

an intricate interplay to fine-tune gene expression. These 

data provide novel opportunities for treatment of anxiety-

related disorders which can be utilized complementary or 

as an alternative to already existing ones. 
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