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Incidence of overweight and obesity has dramatically increased during the past three decades. Treatment of this 

serious clinical problem is hindered by the fact that once obesity has developed, the elevated body weight is 

defended against weight-decreasing treatment strategies by mechanisms that are not yet fully understood. This 

review focuses on the neuronal mechanisms that contribute to the maintenance of obesity after it development in 

the DIO rat model. Among the neuronal factors regulating energy intake, orexigenic neuropeptide relaxin-3 and 

its cognate receptor RXFP3 may play an important role in the defense of elevated body weight in DIO. The levels 

of expression of relaxin-3 mRNA in the brainstem nucleus incertus (NI) were significantly increased in thead 

libitum feeding state in DIO rats compared to DR rats. However, the effects of relaxin-3 in the DIO ad libitum-

fed rats may be compensated by a significant decrease in the levels of expression of RXFP3 mRNA in the food 

intake-regulating brain regions of DIO rats including the paraventricular hypothalamic nucleus (PVN), central 

amygdala (CeA), NI, and nucleus of the solitary tract (NTS). Remarkably, the DIO rats showed an immediate 

rebound in food intake at refeeding and regained all body weight lost during starvation. This significant increase 

in food intake during refeeding was accompanied by an increase in the levels of expression of RXFP3 in the 

parvocellular PVN, CeA, NI, and NTS in the DIO rats to the levels of the DR rats. Moreover, the expression of 

RXFP3 in the paraventricular thalamic nucleus was significantly higher in the refed DIO rats compared to the 

DR counterparts. A constitutive increase in the expression of relaxin-3 accompanied by a relative increase in the 

expression of RXFP3 in food intake-regulating brain regions during refeeding after food deprivation may 

contribute to the mechanisms of defense of elevated body weight in the DIO phenotype. 
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Introduction 

Incidence of overweight and obesity has dramatically 

increased during the past three decades. In fact, the 

population of overweight and obese individuals in the world 

has more than doubled from1980 to reach 2.1 billion in 2013 

[1]. Despite multiple prevention and treatment initiatives 

against this serious problem threatening public health, no 

country has succeeded in significantly decreasing obesity [1-

3]. Dietary therapy remains the first-line treatment for the 
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majority of obese patients to provide the health benefits of a 

decrease in body weight and adiposity [4, 5]. However, 

numerous studies have shown that dietary restriction 

produces an effective weight loss within a relatively short 

initial period of several months but not in longer periods [6-8]. 

In addition, for one to two thirds of dieters calorie-restricted 

diets are counterproductive because in the long-term the 

patients regain more weight than they lose on their diets [9,10]. 

This difficulty maintaining body weight loss suggests 

functioning of mechanisms that strongly defend elevated 

body weight in obese patients [11-14]. These mechanisms 

originate from a monogenic or polygenic basis. Although the 

monogenic forms of obesity induce the most extreme and 

early-developed obese phenotype, human obesity in the vast 

majority of cases is polygenic in origin [15-17]. 

An animal model closely representing human obesity 

developed on a polygenic basis is diet-induced obesity (DIO) 

in rodents. DIO rats fed a high-energy (HE) diet develop the 

obese phenotype in contrast to diet-resistant (DR) rats that 

maintain normal body weight on an HE diet [18-23].This 

review focuses on the neuronal mechanisms that contribute 

to the maintenance of obesity after it is established in the DIO 

rat model. Among the neuronal factors regulating energy 

intake, a recently discovered orexigenic neuropeptide 

relaxin-3 [24, 25] and its cognate receptor RXFP3 may play an 

important role in the defense of elevated body weight. 

Relaxin family peptides and elaxin family peptides and its 

receptors 

Relaxin-3, a 6 kDa peptide discovered in 2001 [24], belongs 

to the relaxin peptide family [26]. This family 

includes3relaxins and 4 insulin-like peptides (INSL 3-6), 

which are heterodimeric peptides with two disulfide bonds 

linking the A- and B-chains and an additional intra-A chain 

connection [26]. Unlike the other relaxins, which show 

considerable interspecies heterogeneity, relaxin-3 homology 

is well-conserved across species suggesting highly preserved 

and critical biological functions [27]. Relaxin family peptides 

bind to G protein-coupled receptors (GPCR). So far, four 

receptors of relaxins, the relaxin family peptide receptors 

(RXFP) 1-4, have been identified [28]. RXFP3 and RXFP4 are 

classic peptide ligand GPCRs and bindrelaxin-3 and INSL5 

with high affinity [26 ,29]. The receptors RXFP1 and RXFP2 

have a large extracellular N-terminal leucine-rich repeat 

domain and are the cognate receptors for relaxin (relaxin-2 

in humans and primates and relaxin-1 in other mammals) and 

INSL3 [26]. Although relaxin-3 binds with high affinity to its 

cognate receptor RXFP3, it also binds to RXFP1 [30, 31] and 

RXFP4 [32]. In contrast to humans, the RXFP4 receptor gene 

is a non-functional pseudogene in rats [32, 33]. Therefore, in 

the rat brain the relaxin-3 signals may be mediated by RXFP1 

and RXFP3 receptors. However, the affinity of relaxin-3 to 

its cognate receptor RXFP3is about 10 times higher than to 

RXFP1 [32, 34]. Importantly, RXFP3, the cognate receptor of 

relaxin-3, does not bind human relaxin or any other members 

of the insulin/relaxin peptide family [32]. RXFP3 is coupled 

to Gi/o protein, and functional activation of RXFP3 by 

relaxin-3 results in inhibition of adenylyl cyclase (AC) and 

cyclic adenosine monophosphate (cAMP) generation (Fig. 1) 
[26, 32, 34, 35]. RXFP3 activation and release of β and γ subunits 

from Gi/o protein triggers activation of the protein kinase C 

(PKC) and phosphoinositide 3-kinase (PI3K)-dependent 

pathways leading to phosphorylation of extracellular signal-

regulated kinase (ERK) 1/2 (Fig. 1) [26, 35]. Activation of 

ERK1/2 leads to induction of the expression of immediately 

early gene c-fos and an increase in the AP1 complex 

formation (Fos-Jun complex, originally termed activator 

protein 1, AP1) [36]. The AP1 complex activates transcription 

of a number of peptides that function as neurohormones, 

receptors of neurotransmitters, or neurotransmitter-

producing enzymes such as corticotropin-releasing factor 

(CRF), tyrosine hydroxylase (catalyzing a rate-limiting step 

in the synthesis of catecholamine neurotransmitters), and β1-

Figure 1. Intracellular signaling from relaxin-3 via its receptor 
RXFP3. RXFP3, the cognate receptor of relaxin-3, is a G protein-
coupled receptor. Activation of RXFP3 by relaxin-3 leads to 

inhibition of adenylyl cyclase (AC) by Gi/o subunits. Release of 

subunits from the G protein triggers activation of PI3K and 
PLC/PKC-dependent pathways leading to phosphorylation of 
extracellular signal-regulated kinase (ERK) 1/2. Activation of 
ERK1/2 leads to the expression of immediate early gene c-fos and 
an increase in the AP1 complex formation (Fos-Jun complex, 

originally termed activator protein 1, AP1). The AP1 complex 
activates transcription of neuropeptides containing the AP1 
binding motive in the gene promoter such as corticotropin-

releasing factor (CRF), tyrosine hydroxylase (TH), 1-adrenergic 

receptor (1-AR). ERK 1/2 - extracellular signal-regulated kinase; 
MEK 1/2 - mitogen-activated protein kinase; PI3K - 
phosphoinositide 3-kinase; PKC - protein kinase C; PLC - 
phospholipase C; Raf - serine/threonine-specific protein kinase; 

Ras - rat sarcome proto-oncogene; Shc - SH-containing proto-
oncogene; SOS - son of sevenless guanine nucleotide exchange 
factor; Src - proto-oncogene tyrosine-protein-kinase. 
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adrenergic receptor [37-39]. Acute intracerebroventricular (icv) 

injection of relaxin-3 induced an increase in Fos protein 

expression, a molecular marker of neuronal activation, in the 

hypothalamic regions such as the paraventricular 

hypothalamic nucleus (PVN), arcuate hypothalamic nucleus 

(ARC), supraoptic nucleus(SON), and lateral hypothalamus 
[40, 41]. Relaxin has been classically known for its role in 

reproduction and parturition as well as in vasodilation and 

cardiac stimulation [42]. Accordingly, expression of relaxin 

and RXFP1 is widely distributed in the central and peripheral 

tissues including the brain, heart, skin, liver, ovaries, and 

testes [26]. Conversely, the expression of relaxin-3 and its 

cognate receptor RXFP3 is almost exclusively confined to 

the brain [24, 25, 34, 43-45]. 

Expression of relaxin-3 and RXFP3 in the brain 

Relaxin-3is expressed by neurons in the brainstem, but 

broadly innervate the forebrain including the entire limbic 

system and hypothalamus [26]. Neuroanatomical studies 

conducted in the rat and mouse have revealed that relaxin-3 

is strongly expressed within the neurons of the pontine 

nucleus in certus (NI), while smaller populations are also 

present in the pontineraphé, periaqueductal gray, and in a 

region dorsal to the substantia nigra [25, 44-46]. The majority of 

the NI relaxin-3 neurons produces inhibitory 

neurotransmitter-aminobutyric acid (GABA) and co-

expresses the CRF type 1 receptor [46]. CRFicv administration 

induces expression of the immediate early gene c-fos in NI 

relaxin-3 neurons [46]. Identification of dense-core peptide 

vesicles in the neuronal perikarya and presynaptic terminals 

of relaxin-3 neurons strongly suggests that relaxin-3 plays 

the role of neurotransmitter [46]. The NI relaxin-3 neurons 

widely project to the hypothalamus, septum, cortical, and 

limbic brain regions [45,46]. Histochemistry, in situ 

hybridization, and autoradiography have shown that 

distribution of RXFP3 mRNA largely overlaps the binding 

sites of relaxin-3 and distribution of relaxin-3-positive axonal 

terminals [44-47]. Thus, the density of relaxin-3 fibers as well 

as RXFP3 mRNA and binding sites is high in the brainstem 

and hypothalamic regions such as the nucleus of the solitary 

tract (NTS), NI,PVN, SON, the periventricular and lateral 

hypothalamic areas as well as in the septum, hippocampus, 

central and medial amygdala, and paraventricular thalamic 

nucleus (PVT) [43]. This large brain distribution of the 

relaxin-3/RXFP3 system suggests multiple functional 

implications for relaxin-3. There is evidence that relaxin-3 

Figure 2. Expression of relaxin-3 in the diet-induced obese (DIO) model. The DIO rats show higher expression of relaxin-3 
in the compact part of the nucleus incertus (NIc, pars compacta) at feeding (fed ad libitum, AL; or refed for 1 h after 12 h of food 
deprivation, FD) states compared to the diet-resistant (DR) rats. In contrast, 12 h of food deprivation (FD) significantly increased 
relaxin-3 expression in the NIc in the DR rats but not the DIO rats. A, The relative levels of expression of relaxin-3 mRNA in the 
NIc.B, Dark-field micrographs showing the positive hybridization signal of relaxin-3 mRNA in the NIc and pars dissipata of NI 

(NId) of the DR and DIO rats fed ad libitum (DR-AL, DIO-AL; left micrographs) or after 12 h of food deprivation (DR-FD, DIO-
FD; right micrographs). C, Diagram of the coronal rat brain section [154] 9.80 mm caudal to the bregma showing the location of 
the NIc and NId. *Significantly (p<0.05) different compared to the DR rats in the same feeding condition. †Significantly different 
compared to the AL rats in the same phenotype. 4v–fourth ventricle. Modified from [67]. Reprinted with permission (Elsevier; 
3416091293348). 
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signaling is implicated in stress and anxiety [41,48-50], feeding 

and metabolism [48, 51-53], motivation, reward, and arousal [49, 

54, 55]. 

Role of relaxin-3 and RXFP3 in food intake regulation 

Behavioral studies have demonstrated an important role of 

relaxin-3 in food intake regulation [56-59]. Central 

administration ofrelaxin-3 strongly stimulated feeding in 

satiated rats. Acute icv injections of relaxin-3 increased food 

consumption during 1 h after administration during early 

light and dark phases [59]. A similar increase in food intake 

was demonstrated after icv administration of specific 

agonists of RXFP3 (e.g., R3/I5, RXFP3 analogue 2) [60]. 

Blockade of the orexigenic effects of relaxin-3 by specific 

RXFP3 antagonists (e.g., R3 (BΔ23-27) R/I5 or RXFP3 

analogue 3) provided evidence that an increase in food intake 

induced by relaxin-3 was specifically mediated by RXFP3 
[60-62]. The neuron populations that mediate orexigenic effects 

of relaxin-3 include several RXFP3-expressing 

hypothalamic regions because microinfusions of relaxin-3 

into the PVN, ARC, SONas well as in the anterior preoptic 

area strongly stimulated feeding [52, 59, 63]. In contrast to rats, 

icv or intra-PVN injections of RXFP3 agonists did not 

increase feeding in satiated or mildly food deprived mice, 

whereas administration of an RXFP3 antagonist reduced 

food intake [54]. These between-species variations indicate a 

possible difference at the basal tone of relaxin-3 or at the 

levels of RXFP3 expression in the food intake-regulating 

areas of the mouse and rat brains. 

In addition to significant hyperphagia, chronic and 

subchronic icv or intra-PVN administration of human 

relaxin-3 or a specific RXFP3 agonist induced increased fat 

accumulation and body weight gain [51, 52, 64]. Bilateral intra-

PVN injections of recombinant adeno-associated virus 

(rAAV) expressing a specific RXFP3 agonist R3/I5 

increased daily food intake and body weight gain in adult rats 
[53]. Specific knockdown of relaxin-3 expression induced by 

infusion of rAAV silencing relaxin-3 expression did not alter 

the rats’ food intake or body weight on regular chow [65]. 

However, a specific strain of relaxin-KO mice fed a high fat 

diet were leaner than congenic controls [64] suggesting that 

relaxin-3 may be specifically involved in diet-induced 

obesity. The expression ofralaxin-3may be perturbed by 

physiological challenges such as stressful conditions, food 

restriction, ordiet-induced obesity [46, 48, 66, 67]. The levels of 

expression of relaxin-3 mRNA in the compact part of the NI 

(NIc) were significantly increased in the DIO rats compared 

to the DR rats maintained on free-feeding (ad libitum) access 

to an HE diet since weaning (Fig. 2).In these rats, the 

expression of relaxin-3 mRNA in the NIc was estimated at 

Figure 3. Expression of RXFP3 in the paraventricular thalamic nucleus (PVT) in the diet-induced obese (DIO) 
model.RXFP3 expression increased significantly in the PVT of the DIO rats but not the diet-resistant (DR) rats during refeeding. 
A, Relative levels of expression of relaxin-3 mRNA in the PVT of DIO and DR rats fad ad libitum (AL), food deprived for 12 h 

(FD), or refed for 1 h after 12 h of food deprivation (RF). B, Dark-field micrographs showing the positive hybridization signal of 
RXFP3 mRNA in the PVT of ad libitum-fed (-AL) or refed (-RF) DR rats (top micrographs) and DIO rats (bottom micrographs). 
C, Diagram of the coronal rat brain section [154] 1.80 mm caudal to the bregma showing the location of the PVT as well as the 
magnocellular (PVNm) and parvocellular (PVNp) parts of the paraventricular hypothalamic nucleus. *Significantly (p<0.05) 
different compared to the DR rats in the same feeding condition. †Significantly different compared to the AL rats in the same 
phenotype. D3V – dorsal third ventricle. Modified from [67].Reprinted with permission (Elsevier;3416091293348). 
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the 8th week of age after they had been maintained on an HE 

diet for 5 weeks, and the obese phenotype and 

hyperinsulinemia developed in the DIO but not the DR rats 
[67]. Overnight food deprivation significantly increased the 

levels of expression of relaxin-3 in the NIc in the DR rats but 

not the DIO rats suggesting that the expression of relaxin-3 

in the DR rats but not the DIO rats was regulated by a 

negative metabolic state [67].   

DIO model: development and behavioral and 

physiological characteristics 

The monogenic forms of obesity such as those caused by 

proopiomelanocortin (POMC) or melanocortin-4 receptor 

gene mutations lead to early-onset severe obesity [68, 69]. 

However, monogenic forms of obesity in the human 

population are relatively rare [70]. The genetic predisposition 

to obesity is mainly based on a polygenic basis that in the 

obesogenic environment triggers an increase in energy intake 

and body weight gain [15-17]. An animal model of diet-induced 

obesity constitutes a reliable approach for studying the most 

common human obesity syndrome. In this model, the animals 

predisposed to develop DIO gain body weight at rates 

comparable to animals fed a low-energy diet and do not 

become obese unless they are fed a HE diet [71-73]. In outbred 

Sprague-Dawley (SD) rats, about one-half of the rats develop 

DIO on an HE diet. The rest of the rats are diet-resistant rats 

that gain weight and fat at the rate comparable to the chow-

fed controls. The obese phenotype was exacerbated by 

selective breeding of DIO rats during 3-5 generations[74] and 

gestational obesity [75]. 

A highly palatable HE diet with high fat content increased 

food intake in DR and DIO rats compared to the chow-fed 

control group; however, DIO rats showed higher 

hyperphagia compared to DR rats [76]. In addition to 

increased food intake, feed efficiency (the ratio of weight 

gained to calories consumed) was significantly increased in 

DIO rats compared to DR rats [76,77]. Because of the increased 

food intake and feed efficiency, only the HE-diet-fed DIO 

rats but not the HE-diet-fed DR rats developed visceral 

obesity, hyperleptinemia, hyperinsulinemia, 

hypercortisolemia, and dyslipidemia [20]. The increased body 

weight gain in DIO rats compared to DR rats was primarily 

due to differences in adiposity, because these phenotypes 

have similar lean body mass [23, 74, 78]. Differential body 

composition between the DIO and DR phenotypes is based 

on the profound metabolic changes in the DIO rats. An 

assessment of the respiratory quotient in DIO rats showed 

that they preferentially use carbohydrates as their main 

energy substrate while DR rats might preferentially consume 

fat [79]. Therefore, the dyslipidemia and visceral obesity of 

DIO rats depend on higher efficiency for storing fat and a 

lower efficiency in consuming it. 

Analyses of the feeding microstructure of DIO rats 

showed that the hyperphagia of DIO rats was produced by an 

Figure 4. Expression of RXFP3 in the paraventricular hypothalamic nucleus (PVN) in the diet-induced obese (DIO) model. 
The levels of expression of RXFP3 mRNA were significantly decreased in the parvocellular (PVNp; panel A) and magnocellular 
(PVNm; panel C) parts of the PVN in DIO rats fed ad libitum (AL) and food deprived (FD) for 12 h compared to the DR rats in 
similar feeding conditions. One hour of refeeding (RF) increased the expression of RXFP3 in the PVNp but not the PVNm of the 
DIO rats to the levels of the DR rats. B, Dark-field micrographs showing the positive hybridization signal of RXFP3 mRNA in the 

PVNp and PVNm of thead libitum-fed (-AL) or refed (-RF) DR rats (top micrographs) and the DIO rats (bottom micrographs). 
*Significantly (p<0.05) different compared to the DR rats in the same feeding condition. 3v – third ventricle. Modified from 
[67].Reprinted with permission (Elsevier; 3416091293348). 
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increase in meal size, but not number [80]. Meal size is 

generally enhanced by the increased hedonic value of food 
[81-83] suggesting that DIO rats have abnormalities in the 

functioning of the brain reward system. The nocturnal satiety 

ratio, defined as the intermeal interval divided by the 

energetic value of the previous meal, was significantly lower 

in the HE-diet-fed DIO rats compared to the HE-diet-fed DR 

rats and the chow-fed controls [80,84]. A deficit in the 

maintenance of postmeal satiety was revealed by shorter 

latencies to initiate feeding, faster eating reinitiating after 

meal completion, and consumption of larger meal bouts in 

DIO rats [80, 84].  

Dysfunction in the integration of peripheral signals in 

DIO 

There is no convincing evidence that increased effects of 

ghrelin, the only peripheral orexigenic peptide known to date 
[85, 86], is a proximate cause of diet-induced obesity. DIO rats 

showed significantly lower levels of plasma ghrelin at dark 

onset and similar levels 6 h later compared to the DR rats [87]. 

In addition, the arcuate and dorsomedial hypothalamic nuclei 

in the DIO rats expressed lower levels of the ghrelin receptor, 

growth hormone secret agogue receptor (GHS-R), compared 

to the DR rats [87].  

An increase in food intake in DIO rats was maintained 

despite significantly higher plasma levels of leptin and 

insulin [76, 88]. Leptin and insulin have been suggested as the 

“adiposity signals” to the brain in the long-term regulation of 

body weight [89]. An increase in adiposity raises the plasma 

levels of leptin and insulin that inhibit the neurons producing 

orexigenic neuropeptide Y (NPY) and activate the neurons 

producing anorectic neuropeptide POMC leading to a 

decrease in food intake [89-92]. However, despite the2-3 times 

increase in plasma leptin levels, DIO rats maintained 

persistent hyperphagia and became more obese compared to 

chow-fed DIO rats and DR rats fed chow oran HE diet [88]. It 

seems that the low efficiency of leptin and insulin in 

decreasing food intake in DIO rats depends on the decreased 

capacity of the hypothalamic regions of the DIO rats to bind 

leptin and insulin [93]. Moreover, even before DIO-prone rats 

develop obesity on an HE diet, they had a pre-existing 

decrease in central leptin and insulin sensitivity [93].Pre-obese 

DIO-prone rats showed a lower decrease in chow intake in 

response to icv insulin injections compared to DR rats [94]. 

Adolescent pre-obese DIO-prone rats had less expression of 

leptin receptor mRNA in the ARC compared to the DR 

counterparts [95]. Peripheral injection of leptin produced 

significantly less anorexia and lower hypothalamic 

phosphorylation of the signal transducer and activator of 

transcription 3 (pSTAT3), a signal molecule downstream to 

the leptin receptor, in the DIO-prone rats compared to the 

Figure 5. Expression of RXFP3 in the central amygdala (CeA) in the diet-induced obese (DIO) model. The levels of 
expression of RXFP3 mRNA were significantly lower in the CeA in the DIO rats fed ad libitum (AL) and food deprived (FD) 
for 12 h compared to the DR rats in similar feeding conditions. One hour of refeeding (RF) increased the expression of 
RXFP3 in the CeA in the DIO rats to the levels of the DR rats. B, Dark-field micrographs showing the positive hybridization 
signal of RXFP3 mRNA in the CeA of thead libitum-fed (-AL) or refed (-RF) DR rats (top micrographs) and the DIO rats 
(bottom micrographs). C, Diagram of the coronal rat brain section [154] 2.80 mm caudal to the bregma showing the location 

of the CeA. *Significantly (p<0.05) different compared to the DR rats in the same feeding condition. BMA – basomedial 
amygdala; MeA – medial amygdala; opt – optic tract.Modified from [67]. Reprinted with permission (Elsevier; 
3416091293348). 
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DR-prone rats [95]. This lower sensitivity of young DIO rats 

to leptin was not due to a defective blood-brain barrier (BBB) 

since leptin transport across the BBB was comparable 

between the DIO- and DR-prone rats [95]. In contrast, leptin 

BBB transport was decreased by the full development of the 

obese phenotype [95]. However, a decrease in BBB transport 

in DIO rats with fully developed obesity does not entirely 

account for the blunted response to leptin. Indeed, brain 

overexpression of leptin by icv administration of rAAV 

encoding leptin produced anorectic effects in the chow-fed 

control and DR rats maintained on an HE diet. Conversely, 

the DIO rats fed a HE diet were completely unresponsive to 

central rAAV-induced leptin expression [96]. These 

experiments suggest that responsiveness to the leptin 

receptor is significantly decreased in the brains of DIO rats. 

Indeed, direct measurements of leptin receptor mRNA 

expression in the DIO rats maintained on an HE diet showed 

a decrease in the levels of leptin receptor expression in the 

arcuate, dorsomedial, and ventromedial hypothalamic nuclei 

in the DIO rats compared to the DR rats [87]. Therefore, 

hyperphagia of DIO rats seems to depend onseveral pre-

existing or developed on HE diets abnormalities in 

orexigenic and anorectic brain mechanisms. 

Neuronal characteristics of the DIO model 

At the neuronal level, diet-induced obesity was associated 

with synaptic remodeling and misbalance between excitatory 

and inhibitory neurotransmission [97]. There is evidence that 

some of these neuroadaptations take place to normalize a 

number of abnormalities in neuronal functions detected in 

pre-obese chow-fed DIO-prone rats [98]. For example, DIO-

prone rats showed abnormalities in brain serotonin turnover 

that may predispose them to become obese when fat and 

caloric density of diet is increased. However, once diet-

induced obesity developed, these abnormalities in serotonin 

turnover were normalized [98]. Pre-obese chow-fed SD rats 

may be separated as being prone to become DIO or DR by 

their high versus low 24-h urine norepinephrine (NE) output, 

respectively [22, 99]. In addition, the pre-obese DIO-prone rats 

had a greater intra-carotid glucose-induced plasma NE 

increase than the DR-prone rats [22, 100, 101], and their plasma 

NE levels increased more vigorously during refeeding after 

food deprivation [21]. However, the central response of the 

DIO-prone rats to glucose was generally lower compared to 

that in the DR-prone rats [101-104]. Indeed, 1-h intra-carotid 

glucose infusion selectively increased hypothalamic Fos 

expression in the inbred DR rats but not in the DIO rats [105]. 

Figure 6. Dynamics of expression of relaxin-3 (A, B) and its receptor RXFP3 (C, D) in the brain of diet-induced 
obese (DIO) rats fed ad libitum (A, C) or refed after food deprivation (B, C) shown inthe sagittal rat brain 
sections[154]. DIO rats have increased levels of expression of relaxin-3 in the NIc at ad libitum feeding (panel A) and 
refeeding after food deprivation (panel B) compared to diet-resistant (DR) rats. However, in thead libitum-fed state the 
effects of increased relaxin-3 may be compensated in DIO rats by a significant decrease in the levels of expression of 
RXFP3 in several brain regions (panel C). Conversely, during refeeding the levels of RXFP3 expression increased in 
DIO rats to the levels detected in the DR rats in the PVNp, CeA, NIc, and NTS. In addition, at refeeding the levels of 

expression of RXFP3 in the PVT were significantly higher in the DIO rats compared to the DR rats (panel D). An 
increase in RXFP3 expression during refeeding accompanied by constitutive overexpression ofrelaxin-3 may 
contribute to the mechanism of rapid regainingof body weight lost during food deprivation in the DIO model.  CeA – 
central amygdala; NIc - compact part of the nucleus incertus; NTS – nucleus of the solitary tract; PVNm – magnocellular 
part of the paraventricular hypothalamic nucleus; PVNp – parvocellular part of the paraventricular hypothalamic 
nucleus; PVT – paraventricular thalamic nucleus; SON – supraoptic nucleus. 
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In addition, the DIO rats showed an impaired counter 

regulatory response to insulin-induced hypoglycemia [106], 

and bilateral NE infusions in the PVN increased plasma NE 

in the DR-prone rats but not the DIO-prone rats [107]. 

Hypothalamic NE turnover and endogenous NE in the PVN 

were significantly decreased, whereas in the median 

eminence, a circumventricular organ with disrupted BBB, 

NE turnover was increased by 100% in DIO-prone rats [99]. 

Similar to normalization of serotonin turnover, 3 months on 

an HE diet resulted in comparable 24-h urine NE in DIO and 

DR rats [22]. 

Not all pre-existing neuronal abnormalities are normalized 

by the development of obesity. Thus, DIO rats showed lower 

basal and postprandial brain glucose utilization even after 3 

months on an HE diet [108]. In addition, DIO rats regardless 

of their diet had lower hippocampal glucocorticoid receptor 

(GR) and central amygdala (CeA)CRF mRNA expression 

than DR rats [109]. A decrease in the expression of the 

anorectic and the rmogenic neuropeptide CRF in DIO rats 

may contribute to a higher body weight gain and higher feed 

efficiency in DIO rats submitted to a session of restraint 

stress compared to their unstressed DIO counterparts [110]. 

Indeed, stress was associated with reduced expression of the 

leptin receptor in the dorsomedial nucleus and CRF in the 

CeA specifically in the DIO rats fed a HE diet [110]. Therefore, 

the acutely stressed DIO rats showed a decrease in the 

anorectic effects of stress and an increase in the lipogenic and 

hyperphagic potential of circulating corticosterone [110]. The 

DIO rats submitted during 5 weeks to daily unpredictable 

stress, showed a lower increase in PVN CRF mRNA 

expression and a higher increase in food intake and body 

weight gain compared to the non-stressed DIO rats and the 

stressed and non-stressed DR counterparts [111]. In the brain, 

the anorectic effects of CRF are mainly mediated by the CRF 

type 2 receptor (CRF-2R) [112-114]. In addition to lower 

expression of CRF in the CeA in basal conditions [109] and in 

the PVN in stressful conditions [110,111], DIO rats have 

reduced sensitivity to the anorectic effects of a specific CRF-

2R agonist urocortin 2 [84]. 

There is evidence that the intrinsic tone of another stress- 

and food intake-regulating neurohormone oxytocin 

expressed in the magnocellular neurons of the PVN and 

SONis substantially decreased in diet-induced obesity [115]. A 

decrease in oxytocin effects may contribute to the 

development of obesity because central and peripheral 

administration of oxytocin reduces food intake in fasted 

normal-weight rats [116] and decreases food intake and body 

weight gain in DIO rats [117]. Furthermore, oxytocin and 

oxytocin-receptor deficient mice were characterized by 

development of late-onset obesity [118, 119]. 

In the ARC, cocaine and amphetamine-regulated 

transcript (CART), POMC, and a product of POMC 

enzymatic cleavage, -melanocyte-stimulating hormone (-

MSH), were recognized as anorectic neuropeptides 

suppressing feeding behavior [120-122]. DIO rats maintained on 

an HE diet expressed lower levels of POMC, -MSH, and 

CART in the ARC compared to the DR counterparts [123,124]. 

However, this effect may be modified by diet composition 

and metabolic state:Feeding of a highly palatable cafeteria 

diet -MSH 

expression in the ARC of the DIO rats compared to the DR 

rats [125]; conversely, when the DIO rats fed a highly palatable 

diet switched to low-energy chow, the levels of ARC 

expression of POMC mRNA decreased [126]. Such 

modulation of the expression of these anorectic 

neuropeptides suggests functioning of the neuronal 

mechanisms defending elevating body weight in DIO rats 

when caloric value of a diet changes. 

Defense of elevated body weight in DIO rats: the NPY 

and relaxin-3 related mechanisms 

There is good evidence that an individual organism 

maintains a certain level of homeostatic stability by all ostatic 

(i.e. “remaining stable by being variable”) adjustments to the 

immediate conditions [127,128]. In the DIO model, diet 

composition and genetic background interact to reveal the 

underlying weight gain phenotype, which is manifested only 

if rats are maintained on an HE diet. After establishing, the 

higher set points in body weight regulating mechanisms are 

difficult to revoke [71, 73, 129]. It seems that with developed 

diet-induced obesity several neuronal mechanisms come into 

play to adjust food intake and energy expenditure against 

metabolic challenges to defend the elevated body weight in 

DIO rats. 

Pre-obese chow-fed DIO-prone rats have physiological 

abnormalities that contribute to the development of obesity 

on an HE diet. Increased 24-h urine NE excretion [22] and 

hypothalamic NPY mRNA expression are examples of pre-

obese abnormalities of DIO-prone rats [74]. NPY is a 36-

amino acid neuropeptide that potently stimulates food intake 

in satiated states [130]. Food deprivation increases and 

refeeding restores the basal expression of prepro-NPY 

mRNA in the ARC in normal-weight rats [91]. Interestingly, 

during the pre-obese period, constitutively increased levels 

of NPY expression in DIO-prone rats did not show up-

regulation by food deprivation that was normally detected in 

DR-prone rats [131]. Similarly, DR rats but not DIO rats with 

fully developed obese phenotype showed an increase in 

relaxin-3 expression in response to food deprivation (Fig. 2). 

Pre-obese abnormalities of DIO-prone rats such as the 

increased hypothalamic expression of NPY contribute to the 

DIO-prone rats to develop obesity on an HE diet. Once the 

DIO phenotype is established, the increased weight gain 

persists even when rats are switched back to a low-energy 

chow diet [71, 73]. For example, the increased body weight and 

fat deposition in DIO rats fed an HE diet for 3 months 
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persisted for up to 3-4 months after the rats were switched to 

chow [71,73]. To lose body weight and carcass fat to levels 

comparable to those in the HE diet-fed DR counterparts, the 

energy intake of DIO rats has to be forcibly restricted. 

Full development of the obese phenotype in DIO rats on 

an HE diet was accompanied by normalization of or 

compensation for physiological parameters such as urine NE 

levels [98]. Maintaining DIO rats on an HE diet for 12 weeks 

that induced the development of obesity and 

hyperleptinemia, decreased the expression of ARC NPY to 

levels that were even lower than those detected in the HE- 

and chow-fed DR rats [132]. The decrease in hypothalamic 

NPY expression in DIO rats with an established obese 

phenotype was accompanied by a compensatory increase in 

the binding capacity of the NPY receptors in the 

hypothalamus, CeA, and hippocampus [133]. Interestingly, in 

DIO rats with established obesity, ARC expression of NPY 

became sensitive to metabolic challenges and up-regulated 

by food restriction [132] or switching to a low-fat diet after an 

HE diet[134]. Such adaptations may contribute to the 

immediate rebound in food intake and regaining all lost body 

weight during food restriction when DIO rats are given ad 

libitum access to chow after food restriction [129, 135].  

The orexigenic effects of relaxin-3 constitutively over 

expressed in ad libitum-fed DIO rats with an established 

obese phenotype may be compensated by a significant 

decrease in the levels of expression of RXFP3 in specific 

brain regions such as the parvocellular and magnocellular 

parts of the PVN (PVNp and PVNm, respectively), SON, 

CeA, as well as in the brainstem in the NIc and NTS [67]. 

Conversely, in thead libitum-fed state the PVT expressed 

comparable levels of RXFP3 between the DIO and DR 

phenotypes. During refeeding, the expression of RXFP3 in 

the PVT was significantly higher in DIO rats compared to the 

DR counterparts (Fig. 3). The PVT integrates the visceral and 

hypothalamic signals and relays them to the limbic regions 

and ventral striatum [136, 137], thus regulating arousal and 

feeding. The role of relaxin-3 in arousal and circadian 

activity has been suggested based on the anatomical and 

behavioral studies [44, 138]. In the magnocellular brain regions, 

the PVNm and SON, relaxin-3 regulates water intake [40] and 

expression of oxytocin and vasopressin [53, 139]. However, our 

study demonstrated a significant decrease in the levels of 

expression of RXFP3 mRNA in the PVNm (Fig. 4, C) and 

SON [67] in all experimental feeding conditions including ad 

libitum feeding, 12 h of food deprivation, and 1 h of 

refeeding in the DIO rats compared to the DR counterparts. 

The stable decrease in the RXFP3 expression in the 

magnocellular brain regions in the DIO rats regardless of 

feeding conditions does not indicate a particular role of these 

areas in food intake regulation in the DIO model according 

to the feeding states at least in the short-term food 

deprivation and refeeding treatment used in this study [67]. In 

contrast to the PVNm and SON, the levels of expression of 

RXFP3 in the PVNp (Fig. 4) as well as in the CeA (Fig. 5), 

NIc, and NTS increased by 1-h refeeding in the DIO rats to 

the levels detected in the DR rats [67]. These brain regions that 

show a relative increase in the levels of RXFP3 expression in 

the refed DIO rats are directly involved in the food intake-

regulating network. Postprandial activation of the PVNp, 

CeA, and NTS but not the PVNm and SON depends on the 

integrity of the visceral vagal afferents [140]. The NTS is the 

first brain relay for the vagal sensory signals, and the NTS 

neurons directly project to the NI, CeA, and PVNp [140-142]. 

The direct effects of relaxin-3 in the CeA and NTS have not 

yet been shown, but given the important role of these brain 

structures in feeding behavior [143-147], increased RXFP3 

expression in the CeA and NTS in DIO rats during refeeding 

may contribute to an increase in sensitivity to the orexigenic 

effects of relaxin-3. In the NI, RXFP3 may be involved in 

autoregulating the expression of relaxin-3 or other 

neuropeptides expressed in this brain nucleus such as 

galanin, cholecystokinin, and somatostatin [56,148]. A relative 

increase in RXFP3 expression in the PVNp (Fig. 4A, B), the 

key regulator of the hypothalamic pituitary adrenal (HPA) 

axis activity [149], may play a role in the stronger activation of 

the PVNp and HPA axis to food deprivation and refeeding in 

the obese phenotype [150-152]. In addition to an important role 

in neuroendocrine hypophysiotropic activation of the HPA 

axis, the PVNp is directly involved in food intake regulation 
[153], and direct administration of relaxin-3 or a specific 

RXFP3 agonist in the PVN significantly increased feeding 
[53]. 

Therefore, the relative increase in the expression of the 

cognate relaxin-3 receptor RXFP3 in DIO rats in key brain 

regions involved in food intake regulation (Fig. 6) 

concomitantly with a constitutive increase in relaxin-3 

expression in the NIc in the DIO rats may contribute to a 

significant increase in food intake in the DIO rats during 

refeeding after food deprivation compared to the DR rats [67] 

and rapid regaining of body weight lost during food 

deprivation [129, 135]. 

Conclusions 

Investigating the neuronal mechanisms related to the 

development and maintenance of the DIO phenotype has 

revealed that DIO rats have pre-obese abnormalities such as 

increased NE plasma and urine levels, increased ARC NPY 

expression, and decreased sensitivity to leptin and insulin. 

Some of these abnormalities such as low sensitivity to leptin 

and insulin persist while obesity develops on an HE diet. 

However, some pre-obese abnormalities such as increased 

peripheral NE or ARC NPY normalize or compensate to 

levels similar to (such as the NE levels) or even lower than 

(such as the expression of NPY) those of the DR controls. 

This “normalization” seems to occur when the body weight 

and adipose tissue parameters reach a certain elevated, 

compared to the DR rats, level. Such “normalization” or 
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“compensation” of same food intake-regulating factors may 

help in maintaining relative dynamic (allostatic) stability in 

body weight regulation. Similarly, a constitutive increase in 

relaxin-3 expression in DIO rats with fully developed obesity 

may be “compensated” to some degree by a significant 

decrease in the expression of RXFP3 in the strategic food 

intake-regulating brain regions. At this point, any metabolic 

challenge would trigger allostatic adjustments to return to 

relative stability (i.e., the elevated body weight in the DIO 

model). These allostatic adjustments apparently include an 

increase in NPY expression during food deprivation and an 

increase in RXFP3 expression during refeeding after food 

deprivation that may contribute to immediate rebound in 

food intake and rapid regaining of body weight lost during an 

energy shortage in DIO rats. These allostatic mechanisms 

defending the elevated body weight set point in DIO rats 

against food restriction or against switching to a low-energy 

diet make the diet-induced obese phenotype hardly reversible 

after full establishment on a HE diet.  
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