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This research highlight focuses on new developments in our understanding of the structure and function of the 

mammalian dyad, and of the type 2 ryanodine receptor (RyR2) in particular. Recent investigations have 

challenged the view of dyads as static and repetitive structures with one functioning much as the next. New 

data has revealed that dyads have diverse molecular architectures and are dynamic structures where the 

organization of their RyR2 can be changed by changes in the local environment. 
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The last 15 years has seen a remarkable evolution in our 

understanding of how the cardiac dyad is structured. Until 

recently, that structure was thought to be somewhat similar 

to that of the skeletal muscle triad. Skeletal muscle triads 

have a rigid array of type 1 ryanodine receptors (RyR1) 

positioned in a checkerboard pattern with the associated 

calcium channels (Cav 1.1) coupled to every second RyR1 

pair. In contrast, early freeze-fracture studies of the cardiac 

dyad indicated that the myocardial calcium channel (Cav 

1.2) was randomly positioned opposite the type 2 ryanodine 

receptors (RyR2), which also formed a regular 

checkerboard array of a hundred or more tetramers 

covering the junctional sarcoplasmic reticulum [1]. As in 

skeletal muscle, the RyR2 configuration was thought to be 

fixed, reflecting intrinsic properties of the protein and 

providing the structural basis for inter-protein allosteric 

interaction [2, 3, 4]. Later immunofluorescence analyses 

refined this view, positioning the Cav1.2 more centrally 

over their underlying RyR2 clusters, as well as finding 

numerous smaller clusters of RyR2 without adjacent Cav1.2 

- a grouping whose function remains unknown[5]. Other 

than differences in size, individual dyads were thought to 

be largely equivalent in both structure and function [6]. New 

imaging techniques have changed this perception. 

Dyads can be differentiated on the basis of at least three 

characteristics; their molecular constituents [7, 8, 9], their 

position within the cell [7, 8, 10] and the latest discovery, 

which is the topic of this research highlight, the distribution 

of their ryanodine receptors [11, 12, 13]. 

Different labs, one using electron tomography and the 

other super-resolution immunofluorescence microscopy, 

published near simultaneous papers demonstrating that the 

RyR2 tetramer array did not span the entire dyad [12, 13]. The 

tetramers were instead distributed in small clusters of ~1-

20 members that were separated from each other by ~50-

100 nm. These results enabled a re-analysis of Ca2+ 

dynamics and spark formation, making the polymorphism 

of the latter much easier to explain[14]. 

Another landmark paper studied purified RyR1 in lipid 
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bilayers and demonstrated that the tetramers could 

spontaneously arrange themselves in one of two ways, 

dependent on the free Mg2+ concentration: in very low 

Mg2+ they were arranged in the expected checkerboard, 

overlapping each other by about 50% (~14 nm) and in 

physical contact with their neighbors, while in 4mM Mg2+ 

they adopted a packed side-by side arrangement where 

adjacent tetramers were not in physical contact[15, 16]. These 

results demonstrated that the tetramers’ relative positions 

might be malleable, and combined with early data from our 

lab, led us to investigate RyR2 tetramer distribution in vivo. 

Using dual-tilt electron tomographic techniques, 

coupled with custom-written image analysis software, we 

examined the distribution of hundreds of RyR2 tetramers in 

rat and human myocytes and found comparable results in 

both species; the RyR2 tetramers were neither uniformly 

nor regularly arranged[11]. Their distributions could be 

roughly categorized as equal parts checkerboard and side-

by-side with a few being isolated or having partners in both 

configurations. The distance between the tetramers was 

highly variable and the overall impression was one of 

disorder. If there is positive allosteric interaction between 

the tetramers it is unlikely to occur via the tetramers’ clamp 

domains, as this would require a fixed inter-protein 

distance [2].  

Using permeabilized rat ventricular myocytes and the 

same Mg2+ concentrations used by Lai’s group we 

discovered that the tetramers in situ behaved similarly to 

those in the bilayers; 0.1 mM Mg2+ produced a largely 

checkerboard configuration, while 4 mM Mg2+ produced a 

largely side-by-side configuration. A phosphorylation 

cocktail that activated both protein kinase A (PKA) and 

Ca2+-calmodulin-dependent protein kinase II (CamKII) 

also arranged the tetramers into a largely checkerboard 

configuration. The mixed arrangement seen in human and 

rat myocytes would seem to reflect both the ventricular 

myocyte’s intermediate Mg2+ concentration (~1 mM) and 

the tetramers’ basal phosphorylation state.  

These results imply that the tetramers’ positions are 

dynamic and that they move in response to changes in their 

local environment. The disordered RyR2 distributions we 

observed in the rat and human myocytes are best interpreted 

as a snapshot in which the relative positions of the tetramers 

reflect their phosphorylation state and the amount of bound 

Mg2+ among other factors, at the moment they were fixed. 

Importantly, we also found that the tetramers’ distribution 

was correlated with their Ca2+ spark frequency, a measure 

of their open probability; side-by-side tetramers had the 

lowest spark frequency, checkerboard the highest while the 

mixed distribution of control cells produced values roughly 

double that seen in 4 mM Mg2+. These results suggest that 

not all of the tetramers within a given dyad have the same 

open probability, and that a tetramer’s open probability is 

reflected, in part, by its position relative to its neighbors. 

We don’t yet know how the tetramers are moved, whether 

they must be moved to change their open probability, or the 

effect(s) of other regulatory factors such as nitrosylation. 

In conclusion, our view of the dyad has changed from 

that of a fixed and rigid structure to a dynamic one whose 

Ca2+ release is modulated by numerous, local, factors, 

which vary across the width of the myocyte and from one 

dyad to the next. The result is that we can no longer 

consider dyads to be either structurally or functionally 

equivalent, or all the RyR2 within them to have the same 

Ca2+ sensitivity. These results open new avenues of 

investigation and possibly a new understanding of the 

mechanisms that regulate RyR2 and therefore cardiac 

contractility. 
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