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p75 neurotrophin receptor (p75NTR) regulates diverse functions, including survival, differentiation, growth, and 

apoptosis of neurons, through its association with a number of molecules. Accumulating evidence shows that β-

amyloid precursor protein (APP)–related molecules, which also regulate multiple neuronal functions, interact 

with p75NTR. APP is cleaved by secretases to generate several proteins including soluble β-amyloid precursor 

protein alpha (sAPPα), sAPPβ, and amyloid β (Aβ). Binding of Aβ to p75NTR induces neuronal death. In contrast, 

sAPPα directly interacts with p75NTR to enhance neurite outgrowth through the activation of protein kinase A 

(PKA). This review focuses on the molecular mechanisms and functions occurring as a consequence of 

interactions of p75NTR with APP–related molecules. 
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Introduction 

p75NTR is a member of a large family of receptors, 

including tumor necrosis factor (TNF) receptors, Fas 

(Apo-1/CD95), RANK, CD40, and approximately 25 

other members. p75NTR mediates diverse functions, such 

as axonal elongation, neuronal survival, and modulation of 

synaptic transmission. p75NTR regulates both positive and 

negative signals for certain neuronal functions [1, 2]. These 

bi-directional signals can be explained by the complex 

formation of p75NTR with other receptors and multiple 

downstream intracellular signaling molecules. For 

example, p75NTR is known to regulate axonal elongation 

both positively and negatively. Neurotrophin binding to 

p75NTR decreases the activation of Rho small GTPase, 

resulting in the promotion of axonal elongation [3]. Indeed, 

p75NTR-deficient mice show retarded outgrowth of 

intercostal nerves in the developmental stage [3]. In 

contrast, p75NTR is also involved in axon growth inhibition 

through the activation of RhoA in the presence of myelin–

derived inhibitors, such as myelin–associated glycoprotein 

(MAG), Nogo, and oligodendrocyte glycoprotein (OMgp) 
[4]. In this case, p75NTR interacts with the Nogo receptor to 

form a receptor complex for these proteins [5]. Thus, the 

binding partners of p75NTR may determine its downstream 

signaling and function. 

REVIEW 
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p75NTR associates with APP–related molecules [6-8]. Aβ 

peptide that accumulates in Alzheimer’s disease (AD) 

induces cell death via p75NTR in multiple types of cells, 

including some types of neurons [8-11]. A recent study 

demonstrated that the N-terminal fragment of APP (N-

APP) interacts with p75NTR [12]. Aβ and APP often show 

neurotoxicity, whereas sAPPα, which is a product of the 

non-amyloidogenic APP cleavage by α-secretase, has 

neuroprotective effects. Binding of sAPPα to p75NTR 

stimulates neurite outgrowth [7]. In this review, we focus 

on the functions and signals induced by the interaction of 

p75NTR with APP–related molecules in the central nervous 

systems (CNS).  

Molecular profile of APP-related molecules 

APP isoforms 

APP is a single transmembrane protein with a long N-

terminal domain in the extracellular space and a short C-

terminal domain in the cytosol [13]. In mammals, the APP 

super family consists of APP itself, and APP-like proteins 

1 and 2 (APLP1 and APLP2). APLP1 and APLP2 share 

sequence similarity with APP, although they lack Aβ 

domain [14,15]. APLP2 as well as APP are expressed 

ubiquitously, whereas APLP1 is exclusively expressed in 

the brain. The APP genes are located on chromosome 21 
[16]. Alternative mRNA splicing of exon 7 and 8 generates 

the three major APP isoforms (APP695, APP751, and 

APP770) in the CNS [17-22]. APP751 and APP770, but not 

APP695, contain a Kunitz protease inhibitor (KPI) 

domain. In the brain, under the physiological condition, 

APP695 is predominantly expressed. In the AD brain, the 

expression levels of the other two APP isoforms seem to 

be increased [23-25]. These findings suggest that changes in 

the expression of each APP isoform may be associated 

with AD. 

Proteolysis of APP  

APP undergoes post-translational proteolysis to 

generate multiple fragments. These proteolytic products 

elicit pathological and physiological functions (Figure 1). 

There are two distinct pathways of APP metabolism: the 

non-amyloidogenic pathway, which avoids Aβ generation, 

and the amyloidogenic pathway, which generates Aβ. In 

the non-amyloidogenic pathway, APP is cleaved by α-

secretase, releasing the large N-terminal ectodomain, 

sAPPα, from the cell surface. The remaining 83-amino-

acid-long C-terminal fragment (C83) remains in the 

membrane. This fragment can be subsequently cleaved by 

γ-secretase, giving rise to small fragments, p3 and APP 

intracellular domain (AICD). In this pathway, the 

generation of Aβ is avoided, since α-secretase cleavage 

occurs within the Aβ sequence near the extracellular side 

of the plasma membrane [26, 27]. In the amyloidogenic 

pathway, APP is cleaved by β-secretase, which leads to the 

release of the N-terminal ectodomain, sAPPβ. The 

remaining 99-amino-acid C-terminal stub (C99) can be 

further cleaved by γ-secretase in a similar way as in the 

non-amyloidogenic pathway. This produces AICD and the 

amyloidogenic Aβ peptide [28]. 

Interactions of APP-related molecules with p75NTR 

In the adult brain, p75NTR expression is restricted in the 

CNS, and the highest expression is observed in the neurons 

in the cholinergic basal forebrain, which represents a 

vulnerable region in AD [29-32]. p75NTR mediates apoptosis 

induced by pro–nerve growth factor (pro-NGF), which is 

increased in the brains of AD subjects [33]. These 

observations suggest a possible association of p75NTR and 

AD pathogenesis.  

Although the expression levels of p75NTR in the brains 

of patients with AD are contentious, most studies conclude 

that AD is associated with thedownregulation of 

tropomyosin-related kinase A (TrkA) expression with 

changed/unchanged expression of p75NTR [34-36]. The 

expression levels of Aβ1–42 and p75NTR in the 

Figure 1. APP-related molecules and p75NTR. α-secretase 
catalyzes the cleavage of APP to generate a soluble peptide, 
sAPPα. β-secretase cleaves APP to generate an alternate 
soluble peptide, sAPPβ, which is cleavedby γ-secretase to 

generate Aβ. The interaction of p75NTR with Aβ or APP leads to 
neuronal death. In contrast, the interaction of p75NTR with 
sAPPα promotes neuroprotection and neurite outgrowth 
through the activation of PKA. 
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hippocampal cells from 12–15 month–old AD-triple 

transgenic mice (3xTg-AD mouse, which expresses APPs 

we, PS1M146V, and tauP301L mutations) are increased 

compared to that in hippocampal cells from age–matched 

wild-type mice [37]. These results are consistent with 

another observation that demonstrates elevated expression 

of p75NTR in hippocampal CA1 and CA2 neurons in human 

AD brains [34]. 

Accumulating evidence has revealed that p75NTR 

directly interacts with Aβ and APP, and that this 

interaction leads to apoptosis [6, 8]. It has been shown that 

aggregated Aβ induces apoptosis in NIH-3T3 cells stably 

expressing p75NTR, but not wild-type control cells lacking 

the receptor. Normal neural crest–derived melanocytes, 

endogenously expressing p75NTR, undergo apoptosis in the 

presence of Aβ [8]. Binding of Aβ to p75NTR induces the 

transcription of c-Jun mRNA. This leads to the activation 

of c-Jun N-terminal kinase (JNK) [38]. These results 

suggest that the interaction of p75NTR with Aβ induces 

apoptosis through the activation of JNK [8-10, 38].  

Further, p75NTR is also involved in neuronal damage by 

interacting with APP. p75NTR directly interacts with APP, 

and the co-expression of p75NTR and APP induces cell 

death [6]. The interaction of p75NTR with APP is blocked in 

the presence of the ligands for p75NTR, Aβ or NGF. Taken 

together, the interaction of p75NTR with Aβ and APP 

contributes to neuronal vulnerability in AD. 

The effects of sAPPα on the neurons related with 

p75NTR 

Neuroprotective role of sAPPα 

α-secretase catalyzes the cleavage of APP to generate 

sAPPα. This cleavage occurs within the Aβ sequence, 

avoiding Aβ generation. Unlike Aβ and APP, sAPPα has 

been shown to demonstrate neuroprotective effects both in 

vivo and in vitro. In the in vivo model of transient ischemia, 

administration of sAPPα protects CA1 hippocampal 

neurons against ischemic injury [39]. Treatment with 

sAPPα following a traumatic brain injury in rats improves 

functional outcome [40]. The growth factor-like domain 

(D1) and the E2 domain within the carbohydrate domain 

(D6a) of sAPPα (residues 28–123 and 316–498), which are 

able to bind to heparan sulfate proteoglycans (HSPGs), is 

found to be involved in the improvement of motor and 

cognitive outcomes against traumatic brain injury in rats, 

suggesting that HSPGs could mediate this response [41]. 

Furthermore, animal models that over express sAPPα have 

been developed. Knock-in of sAPPα rescues the abnormal 

phenotype of APP knockout mouse, such as reductions in 

the brain and body weight, grip strength deficits, and the 

impairment in spatial learning and LTP [42]. Transgenic 

mice with neuronal over-expression of APP, mutated at the 

α-secretase site, demonstrate the increased aggressiveness, 

disturbed responses to kainic acid and N-methyl-D-

aspartate (NMDA), neophobia, and deficiency in 

exploratory behavior [43, 44]. These animal models confirm 

that sAPPα plays beneficial roles in the neurons. 

sAPPα shows neuroprotective function against Aβ 

peptide-induced oxidative injury and glucose deprivation 

in vitro [45,46]. The C-terminus of sAPPα (residues 591–

612) mediates in vitro neuroprotective effects against 

glutamate and Aβ toxicity, and heparinases greatly reduce 

this action [47]. sAPPα also protects PC12 cells and mature 

neurons from other toxic insults such as epoxomicin or UV 

irradiation by inhibiting the stress-triggered JNK-signaling 

pathway [48]. 

Neurite outgrowth and sAPPα 

sAPPα has been shown to enhance neurite outgrowth 
[49,50]. Both the secreted forms of APP695 and APP770 

promote neurite outgrowth in embryonic rat neocortical 

explants. This indicates that KPI domain is not responsible 

for neurite outgrowth-promoting activity of sAPPα.  

The interaction of p75NTR with sAPPα contributes to 

sAPPα-induced neurite outgrowth [7]. Direct interaction of 

sAPPα with p75NTR was identified by co-

immunoprecipitation and enzyme-linked immunosorbent 

assay (ELISA). EC50 of the interaction between sAPPα 

and p75NTR is 90 nM. In contrast, the affinity of NGF for 

p75NTR is higher (Kd 1–2 nM) [51, 52]. These observations 

indicate that the binding affinity of sAPPα for p75NTR is 

lower than that of neurotrophins. Furthermore, Binding of 

sAPPα to p75NTR promotes neurite outgrowth in the 

embryonic mouse cortical neurons. Protein kinase A 

(PKA) inhibitor KT5720 inhibits this function, suggesting 

that PKA activation is essential for sAPPα-induced neurite 

outgrowth.  

Conclusions 

As reviewed here, the interaction of p75NTR with Aβ and 

APP promotes neuronal cell death, while the interaction of 

p75NTR with sAPPα contributes to neurite outgrowth 

through the activation of PKA (Figure 1). These findings 

suggest that the balance of α-cleavage and β-cleavage of 

APP is critical to control cellular susceptibility to 

neurotoxic insults. It is notable that p75NTR mediates these 

opposite cues. The balancing mechanisms through p75NTR 

may regulate the CNS development and the determination 

of cellular fate after CNS injury.  
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