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The physiological and biomedical importance of hydrogen sulfide (H2S) has been extensively studied in our body.  

H2S can be endogenously produced in a variety of cells and tissues by cystathionine γ-lyase, cystathionine β-synthase, 

and/or 3-mercaptopyruvate sulfurtransferase, and is involved in the regulation of vascular function, cell growth, 

insulin secretion, neurotransmission, myocardial contractility, inflammation, and nociception, etc.H2S post-

translation ally modifies proteins by yielding a hydropersulfide moiety (–SSH) in specific cysteine residue(s), termed 

as S-sulfhydration. It is becoming increasingly recognized that S-sulfhydration is a major sources of H2S bioactivity. 

In this research highlight, we discuss our latest published findings which demonstrate the S-sulfhydration regulation 

of proteins by H2S and their importance in aging and cancer protection. 
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In 2002, Wang first created and defined the word 

“gasotransmitter”, and described the criteria for being a 

gasotransmitter [1]. Hydrogen sulfide (H2S), joining with 

nitric oxide (NO) and carbon monoxide, is important 

member in gas transmitter family [1, 2]. Not only from 

environment and industry activity, H2S can also be 

endogenously produced in our body by specific enzymes, 

including cystathionine γ-lyase, cystathionine β-synthase, 

and/or 3-mercaptopyruvate sulfurtransferase, which are 

expressed or can be induced in most of cell types [3-5]. H2S 

can freely penetrate into cell membrane independent of 

any cognate membrane receptors or other transportation 

machineries[1].Accumulated evidence demonstrated that 

H2S is almost involved in all life functions, including cell 

growth, glucose metabolism, insulin secretion, 

neurotransmission, myocardial contractility, 

inflammation, energy generation, and redox balance, etc 
[2]. Despite a wealth of recent publications suggest the 

important path physiological roles for H2S, its molecular 

mechanisms of action remains poorly defined. It is 

proposed that the major signaling mechanism of H2S is 

through the S-sulfhdyration of reactive cysteine residues 

on target proteins by yielding a hydropersulfide moiety (-

SSH), with the potential to confer a functional changes, 

which is analogous to S-nitrosylation of proteins by NO [5]. 

Multiple cellular functions are controlled through the 

post-translational modification of proteins, including 

phosphorylation, glycosylation, ubiquitination, 

methylation, and S-nitrosylation, etc. Post-translational  
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Table 1. S-sulfhydrated proteins and their functional changes 

S-sulfhydrated 

proteins/ 

electrophiles 

Tissue/cell types Outcome Targeted 

cysteine 

residues 

Detection 

methods 

Reference 

GAPDH Liver/HEK-293 NADH generation 150 BSA/TSA/MS 5,7 

Actin Liver Actin polymerization N/A BSA 5 

β-tubulin Liver N/A N/A BSA 5 
Kir6.1 Aorta/HEK-293 Opening of KATP 

channel/vasorelaxation 

43 BSA 3 

NF-κB/p65 Liver/HEK293 /Macrophage Anti-apoptosis 38 BSA/MS 8,9 
PTP1B Hela/HEK-293 Restoration of ER homeostasis 215 BSA/MS 10 

8-nitro-cGMP Fibroblasts Inhibition of cardiac cell 
senescence and oxidative stress 

N/A BSA 11 

Keap1 Fibroblasts Nrf2 activation and inhibition 

of oxidative stress 

151 BSA 12,13 

Parkin Brain/SH-SY5Y cells Higher parkin E3 ligase 

activity/neuroprotective action 

95 BSA/MS 14 

Platelet proteins Platelet Anti-thromogenesis N/A BSA 15 
Androgen receptor Prostate cancer cells Androgen receptor dimerization 611/614 BSA 16 

MEK1 Endothelial cells/fibroblasts PARP-1 activation/DNA 

damage repair 

341 BSA 17 

eNOS Endothelial cells NO generation and endothelial 

cell growth 

443 BSA 18 

P66Shc Cortex/SH-SY5Y cells Anti-oxidant 59 BSA 19 
Ca2+ TRP channels Bone marrow mesenchymal 

stem cells 

Ca2+ influx and osteogenic 

differentiation 

N/A BSA 4 

Membrane proteins Heart Cardioprotection N/A BSA 20 

Note: BSA, biotin switch assay; TSA, tag-switch assay; MS, mass spectrometry 

 

modifications are key mechanisms to increase proteomic 

diversity and serve to sense and transduce cellular signals 

in a precisely coordinated manner [6]. The amino acid 

cysteine in protein is quite reactive, and oxidative 

modification of cysteine residues is an important 

mechanism that regulates protein structure and ultimately 

functions, including S-nitrosylation, S-glutathionylation, 

and S-sulfenylation, etc [6]. Since the first paper describing 

H2S S-sulfhyration of protein in 2009 [5], there have been 

a dozen of proteins observed to be modified by H2S 

through S-sulfhydration, as demonstrated by modified 

biotin switch assay and/or liquid chromatography-tandem 

mass spectrometry (LC-MS/MS) (Table 1) [3-5]. It is 

predicted that, by change in electrostatic environment, 

hydrophobicity, contiguity and orientation of aromatic 

side chains, and proximity of target thiols to transition 

metals or redox centres, S-sulfhydration can alter protein 

conformation and the final function and activity of target 

proteins [16, 21]. 

It is well known that H2S at physiological relevant 

concentrations suppresses oxidative stress and protects 

from cell death. The relative low concentration and the 

small molecular weight of H2S make it hard to directly 

scavenge reactive oxygen species. Our recent paper 

discovered that H2SS-sulfhydrates Keap1, which 

subsequently stimulates Nrf2 nuclear translocation and 

induces anti-oxidant gene transcription and glutathione 

production. Deficiency of H2S enhanced oxidative stress 

and promoted cellular aging [12]. Nrf2 is a master 

transcription factor that regulates the expressions of a 

group of antioxidant genes. Nrf2 activation can be 

attributed to the dissociation from Keap1 through 

posttranslational modulation of crucial cysteine residues in 

Keap1 protein. In normal condition, Keap1 is basically S-

sulfhydated, and exogenously applied H2Sincreases but 

removal of endogenous H2S reduces Keap1 S-

sulfhydration. The cysteine residues 151 in Keap1 BTB 

domain is required for H2S-mediated S-sulfhydration. H2S 

interacted with cysteine residues 151 leading Keap1 

conformational change, which triggerNrf2 release from 

Keap1 following its nuclear translocation and anti-oxidant 

gene transcription.  H2S-induced activation of Nrf2 is not 

caused by increased Nrf2 protein expression, Nrf2 

phosphorylation, or Nrf2 S-sulfhydration.  

More recently, we made another discovery that H2S 

effectively inhibits androgen receptor (AR) transactivation 

by S-sulfhydrating both cysteine 611 and 614 located in 

the DNA binding domain (DBD) of AR [16]. AR signaling 

is essential for the normal development and functions of 

prostate as well as the initiation and progression of prostate 

cancer.AR is a nuclear receptor, which is often activated 

as DBDs bind as dimmers to two hexameric sequences 

orientated as direct or inverted repeats. The interaction of 

H2S and AR through both cysteine611 and 614 may 

destroy zinc-sulfur cluster and cause a structural change in 

AR-DBD, triggering abnormal AR dimerization and DNA 

binding ability. It is still unclear how H2S S-sulfhydration 

of cysteine-611/614 alters AR zinc-finger structure and 
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dimerization. H2S suppressing AR downstream gene 

expression were not due to the alteration of AR interaction 

with heat shock proteins and AR nuclear localization 

(Figure 1). We further observed that glucocorticoid 

receptor and estrogen receptor α, another two hormone 

receptors containinghighly identical DBD as AR, are not 

S-sulfhydrated by H2S, indicating the specificity of 

cysteine S-sulfhydration by H2S in target proteins. 

Maintenance of sufficient level of H2S could effectively 

inhibit ant androgen-resistant growth of prostate cancer 

cells. Based on these discoveries, H2S can not only serve 

as a valuable prognosis indicator but also an effective 

therapeutic target for treatment of both early state of 

prostate cancer and castration-resistant prostate cancer. 

In summary, our studies reveal that protein S-

sulfhydration serves an important role in a wide range of 

H2S-mediated signaling pathways, including protein 

activity, localization, stability, and interaction, and stress 

response. Compared with the large number of S-

nitrosylated proteins which have been identified, the 

observed S-sulfhydrated proteins and the specificity of 

target cysteine are incompletely understood. Protein de-

sulfhydration/trans-sulfhydration, the removal or transfer 

of SH group from cysteine thiol side in proteins, is very 

important but never reported so far. It is also not clear 

whether S-sulfhydration or de-sulfhydration/ trans-

sulfhydration is spontaneous and unregulated, or catalyzed 

by enzymes and other cellular constituents [21]. Similar to 

S-nitrosylation, the formation or removal of an individual 

S-sulfhydration can depend on many factors including the 

reactivity of the individual cysteine residues, its 

surrounding environment, and the composition of the local 

redox-environment, etc. Advances in the detection of S-

sulfhydration will facilitate research directed at the 

identification of S-sulfhydrated proteins in both health and 

diseases. There is a long way to fully understand the stories 

of S-sulfhydrationand de-sulfhydration/trans- 

sulfhydration, but I believe we do have a bright future. 
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