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The oncogenic role of EGFR in many tumors has attracted a great deal of attention in the recent years and 

initiated the development of several potent EGFR inhibitors, which are used clinically for cancer treatment. 

However, the current therapeutic inhibition of EGFR signaling is limited to monoclonal antibodies that bind to 

the EGFR extracellular domain or tyrosine kinase inhibitors that block EGFR kinase activation directly. Despite 

the great promise of these inhibitors, a certain percentage of patients develop resistance to these therapies, 

highlighting the necessity for alternative therapeutic strategies based on our most current knowledge of the 

mechanisms of EGFR signaling. We recently reported that Plakofilin-2 (PKP2) is a novel ligand-independent 

cytoplasmic activator of EGFR signaling. Here we focus on recent studies demonstrating important roles of 

intracellular EGFR activators, and propose targeted disruption of these activators as a novel avenue of 

therapeutic intervention to inhibit EGFR-mediated cancer development. 
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Introduction 

The epidermal growth factor receptor (EGFR) regulates 

cell proliferation, differentiation, survival, motility, and 

blood vessel formation [1, 2]. The signaling pathways of 

epidermal growth factor (EGF) via EGFR are well studied 

due to their importance in regulating a multitude of 

biological functions [3-7]. 

Aberrant EGFR activation correlates with poor clinical 

outcome and is an important contributor to oncogenic 

processes. In addition, perturbations to the genetic sequence 

of EGFR often results in deregulation of EGFR signaling and 

is common in cancer cells and correlates with neoplastic 

progression [8, 9].  

Current anti-EGFR therapies, such as tyrosine kinase 

inhibitors (TKIs) and monoclonal antibodies, demonstrate 

anti-tumor activity in various tumor types including 

non-small-cell lung cancer (NSCLC), squamous cell 

carcinoma of the head and neck (SCCHN), and colorectal 

cancer [10-14]. While both TKIs and monoclonal antibodies 

against EGFR inhibit the EGFR signaling pathway, they 

elicit their effects via unique mechanisms. Monoclonal 

antibodies inhibit EGFR activity by binding to the 

extracellular region of the receptor, therefore disrupting 

ligand binding and preventing downstream signaling. 

Conversely, TKIs inhibit the downstream signaling of EGFR 

by binding to the intracellular tyrosine kinase domain.  

EGFR signaling has been heavily studied, and the promise 

of targeting this pathway promoted the development of 
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several inhibitors which are now used clinically. However, as 

with many targeted cancer therapies, many patients 

eventually develop resistance. Consequently, there is an 

imminent need to broaden our understanding of the 

mechanisms of EGFR signal activation in order to develop 

alternative strategies to target this pathway. 

Therefore, in this review, we discuss the novel concept of 

therapeutic intervention against cytoplasmic EGFR activators 

as a potential second generation of EGFR related cancer 

therapies (Figure 1). 

Cytohesins are EGF-dependent cytoplasmic EGFR 

activators 

Cytohesins have been shown to be guanine nucleotide 

exchange factor (GEF) for ADP ribosylation factors (ARF) 
[15]. The cytohesin family is comprised of four members of 

high homology: cytohesin-1, cytohesin-2 (ARNO), 

cytohesin-3 (Grp1), and cytohesin-4 [16, 17]. This family of 

proteins contain a coil at the N-terminus, followed by a Sec7 

domain, and a pleckstrin homology (ph) domain at the 

C-terminus [16]. Bill et al reported that cytohesins, especially 

cytohesin-2 (ARNO), increase EGFR activation via direct 

association with the cytoplasmic regions of dimerized 

receptors and promoting these domains to undergo 

conformational rearrangements [18]. In addition, the 

cytohesin-specific antagonist SecinH3 diminishes growth of 

the EGFR-dependent lung cancer in a xenograft model using 

PC9 cells. Interestingly, although SecinH3 has been found to 

target the Sec7 domain of the cytohesins, which is required 

for GEF catalytic activity, the Sec7 domain of cytohesin-2 

activates EGFR independently of its GEF activity [18]. This 

suggests that the specific binding between the small molecule 

SecinH3 and the Sec7 domain of cytohesins, rather than its 

enzymatic activity, is important for SecinH3-driven 

inhibition of EGFR activation. Importantly, cytohesins do 

not affect receptor dimerization, but function as activators of 

dimerized receptors by promoting conformational changes 

after EGF stimulation. High expression levels of cytohesin-1 

and cytohesin-2 (ARNO) overexpression correlate with 

enhanced EGFR signal activation in human lung 

adenocarcinomas [18]. Recently, Bill et al also reported that 

inhibition of cytohesins has an anti-proliferative effect 

against H460 and A546, two gefitinib-resistant lung cancer 

cell lines [19]. Other studies by Pan T et al have also 

demonstrated that inhibition of cytohesins, with the 

antagonist SecinH3 or via knock-down of ARNO by 

ARNO-siRNA, can decrease EGFR activation in the HT29 

colorectal cancer cell line [20]. Now, cytohesins are being 

proposed as novel effective targets for inhibiting invasion 

and metastasis, and for colorectal cancer patients that 

developed resistance to Cetuximab or Panitumumab [20].  

Src family tyrosine kinases phosphorylate EGFR directly 

It is well established that SFKs (a proto-oncogenic 

cytosolic Src family tyrosine kinases) including c-Src, Lyn 

and Yes are required for fully activating EGFR signaling [21, 

22].  

Elevated Src kinase activity is observed in several solid 

tumors, such as breast cancer [23-25]. Src is known to be 

involved in the signaling and cross talk between several 

mitogenic pathways, such as the ER (Estrogen Receptor) and 

EGFR family signaling pathways [26]. Furthermore, 

EGFR-mediated Src activation promotes heparin-binding 

EGF-like growth factor (HB-EGF) shedding from the surface 

of cells by ADAM family proteases, which drives autocrine 

EGFR signaling [27]. Since SFKsare involved in many 

Figure 1. EGFR is activated by intracellular molecules. Cytohesins enhance EGFR activation by directly interacting with 
the cytoplasmic domains of dimerized receptors and facilitating conformational rearrangements of these domains. PKP2 
activates EGFR by facilitating EGFR dimerization even in the absence of ligand stimulation. SFKs directly phosphorylate 
limited sites on EGFR.Yes-mediated EGFR phosphorylation occurs on the endosome as well, and requires EGF stimulation 
and pIgA-pIgR transcytosis. 
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oncogenic processes including growth and proliferation, 

invasion, angiogenesis, and metastasis, several Src inhibitors 

(eg. Dasatinib) are now emerging [28-30]. However, Src 

expression alone is not fully responsible for transformative 

ability; herefore, the necessity for combination therapy with 

other inhibitors such as EGFR inhibitors is recognized [31, 32].  

YES is known to be highly expressed in adult neurons, 

spermatozoa, platelets, and epithelial cells [33, 34]. The 

expression and kinase activity of Yes and Src are high in 

malignant skin and colon cancer cells [35, 36]. Su et al revealed 

that binding of the polymeric immunoglobulin A (plgA) to 

polymeric immunoglobulin receptor (plgR) activates Yes, 

followed by EGFR signal activation by direct 

phosphorylation of EGFR in vivo, as well as in vitro [37]. Su 

et al also discussed that abnormaly produced IgA complexes 

by mucosal infection might cause excessive activation of 

EGFR signal activation leading to pathological proliferation, 

a hallmark of IgA nephlopathy. In this model, Yes-mediated 

EGFR phosphorylation occurs on the endosome, results in a 

mild increase in phosphorylation on limited sites (Tyr 845, 

Tyr 992, and Tyr 1173), and requires EGF-mediated 

stimulation and pIgA-pIgR transcytosis, suggesting that Yes 

does not affect receptor dimerization. It has also been 

reported by other groups that SFKs, including Yes, 

phosphorylate Y845 and Y1101 of EGFR.Based on current 

findings, the mechanisms of SFKs-mediated site-specific 

EGFR phosphorylation still remains unclear and needs to be 

investigated in the future.  

PKP2, a novel desmosomal protein for EGFR 

dimerization  

The plakophilins are members of the armadillo-repeat 

family. This family is comprised of three different proteins 

(PKP1, PKP2, and PKP3) [38]. They contain a basic 

N-terminal head domain, an armadillo repeat (arm-repeat; 

42-amino acid repeats) containing region, followed by a 

small C-terminal tail [38]. Plakophilins contain a conserved 

sequence in the amino-terminal head domain termed the HR2 

domain. PKP2 was initially isolated and believed to be a 

desmosomal protein, but further studies have demonstrated 

that it is also localized in the cytoplasm and nucleus [38, 39]. 

PKP2 mutations are correlated with cardiac disorder 

arrhythmogenic right ventricular cardiomyopathies 

(ARVC/D). Additionally, PKP2 knockout mice suffer from 

embryonic lethality (around E10.5) and display abnormal 

heart morphogenesis, indicating that PKP2 has critical roles 

in heart development and function [40, 41].  

PKP2 has also been implicated in promoting oncogenesis 

and it has been reported that PKP2 expression is higher in 

various cancers, especially at their metastatic stage [42-49]. 

However, the role of PKP2 in the development of cancer, as 

well as cancer progression, was unclear. Recently, we 

showed thatPKP2, but not PKP1 or PKP3, specifically 

associates with the cytoplasmic region of EGFR [50, 51]. The 

N-terminus of PKP2, not including the conserved HR2 

domain, is critical for this interaction, which results in 

enhanced EGFR autophosphorylation and EGFR signal 

transduction. An earlier study indicated that PKP2 

localization to desmosomal regions of cell-to-cell attachment 

depends on the N-terminal portion of PKP2 [39]. This 

suggests that PKP2 activates EGFR signal pathways in 

regions of the cell desmosome. More importantly, we 

demonstrated that PKP2 enhances EGF-independent 

dimerization and phosphorylation of EGFR, as well as the 

activation of the downstream effectors of EGFR. 

PKP2-induced phosphorylation of EGFR and subsequent 

ERK activation was entirely inhibited by the EGFR inhibitor 

lapatinib, which suggests that PKP2 exclusively mediates 

EGFR signal activation in EGFR expressing cancer cells. We 

further demonstrated that knock-down of PKP2 significantly 

reduced EGF-induced EGFR autophosphorylation, 

recruitment of adaptor molecules such as SHP-1 and Grb2 to 

EGFR, and receptor internalization (unpublished data for 

internalization). In addition, reduced expression of PKP2 in 

the breast cancer cell line, MDA-MB-231, impaired their 

proliferation and metastatic ability, and ultimately reduced 

the development of tumors in vivo. 

Since EGFR is known to still be able to dimerize in the 

absence of EGF stimulation, this PKP2-induced 

EGF-independent EGFR activation might be one of the 

mechanisms for this event [52]. 

As described in this review, SFKs, cytohesinsand PKP2 

all directly interact with EGFR and activate downstream 

signaling. However, their mechanisms in regulating EGFR 

signaling do not overlap. SFKs are the kinases that 

phosphorylate limited sites on EGFR. Cytohesins function 

after ligand-induced EGFR dimerization. In contrast, PKP2 

activates EGFR by facilitating EGFR dimerization even in 

the absence of ligand stimulation. 

Future directions in research 

Many advances have been made over the past decade in 

effort to target cancers with aberrant EGFR expression and 

signaling. The promise of anti-EGFR antibodies and EGFR 

inhibitors was undermined by patients who did not respond 

to these treatments due to intrinsic resistance, as well as 

those who developed resistance over time. Therefore, 

exploring further into the mechanisms of EGFR activation 

would provide novel candidate targets, such as cytoplasmic 

activators of EGFR, which could be inhibited or disrupted. 
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Additionally, combinatorial therapies targeting extracellular 

and intracellular mechanisms of EGFR activation could be 

explored. Although there are many obstacles due to the 

difficulties in targeting cytoplasmic proteins, emerging small 

molecules such as SecinH3, or others which can disrupt 

protein-protein interactions such as stapled -helical peptide 

technology [53, 54], could be utilized to target cytoplasmic 

activators of EGFR described in this review and those yet to 

be discovered. 
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