http://www.smartscitech.com/index.php/rci

RESEARCH HIGHLIGHT

Molecular basis for N-type voltage-gated Ca²⁺ channel modulation by G_q protein-coupled receptors

Dongil Keum, Byung-Chang Suh

Department of Brain Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 711-873, Korea

Correspondence: Byung-Chang Suh E-mail: bcsuh@dgist.ac.kr Received: January 08, 2015 Published online: March 11, 2015

N-type voltage-gated Ca²⁺ (Ca_V2.2) channels, which enable synaptic transmission by triggering neurotransmitter release, are tightly modulated by G protein-coupled receptors (GPCRs) via several downstream signaling messengers, such as G $\beta\gamma$, calmodulin, arachidonic acid and PIP₂. However, the molecular mechanism by which G_q/11-coupled receptors (G_qPCRs) suppress Ca_V2.2 currents remains unclear. In this research highlight, we review our recent finding that M₁ muscarinic receptors inhibit Ca_v2.2 channels through both G $\beta\gamma$ -mediated voltage-dependent (VD) and G $\alpha_{q/11}$ /PLC-mediated voltage-independent (VI) pathways. Our photometry results also demonstrate that G $\beta\gamma$ -mediated in cells expressing plasma membrane-localized Ca_V β subunits. Our observations demonstrate a novel mechanism for Ca_v2.2 channel modulation by G_qPCRs where the subcellular location of Ca_v β subunits plays a critical role in determining the voltage-dependence of current suppression by M₁ receptors.

Keywords: Ca_v2.2 channels; G protein-coupled receptors; voltage-dependent; $G\beta\gamma$ subunits; phosphatidylinositol 4,5-bisphosphate

To cite this article: Dongil Keum, *et al.* Molecular basis for N-type voltage-gated Ca^{2+} channel modulation by G_q protein-coupled receptors. Receptor Clin Invest 2015; 2: e515. doi: 10.14800/rci.515.

N-type voltage-gated Ca²⁺ (Ca_V2.2) channels are central to synaptic transmission ^[1] in response to the propagation of electrical stimulations and to the processes it underlies, such as learning and memory ^[2] and gene transcription ^[3]. Ca_V2.2 channels are widely expressed throughout the brain ^[4] and spinal cord ^[5], and knockout mice who lack Ca_V2.2 channels show cardiovascular impairment ^[6], hyperactivity ^[7], reduced alcohol consumption ^[8], and hyperaggressive behavior ^[9]. The biophysical and pharmacological properties of Ca_V2.2 channels are determined by diverse combinations of channel subunits. Ca_Vα1B and Ca_Vα2δ are transmembrane proteins. Ca_Vα1B subunits are responsible for forming the voltage-sensitive pore of the channel and Ca_Vα2δ subunits are responsible for promoting Ca_Vα1 subunit stabilization at the plasma membrane ^[10]. Ca_Vβ subunits are intracellular

components that play an essential role in regulating the gating properties and receptor modulation of Ca_V channels. They bind to the I-II linker of the $Ca_V\alpha l$ subunit and finely tune the trafficking of αl channel proteins to the plasma membrane, current density, channel inactivation and channel regulation by phospholipids ^[11-14].

G-protein coupled receptors (GPCRs) precisely regulate Ca^{2+} ion influx through $Ca_V 2.2$ channels ^[15, 16]. The activation of GPCRs coupled to $G\alpha_{i/o}$ ($G_{i/o}PCRs$) or $G\alpha_{q/11}$ (G_qPCRs) is known to suppress $Ca_V 2.2$ current through two distinct pathways. The first operates via G $\beta\gamma$ heterodimer dissociation from $G_{i/o}PCR$. The $G\beta\gamma$ heterodimer then directly binds to the I-II linker of the $Ca_V \alpha 1B$ subunit, which partially overlaps with the binding site of the $Ca_V\beta$ subunit,

Α В M₁R Membrane-bound M₁R $Ca_{v}2.2$ Dr-VSP Ca, 2.2 β subunits PLC PLC VI в**2а** VD VD β**2e** Lyn-β3 βARK-ct Cytosolic M_2R M₁R Ca.,2.2 β subunits AC VI Gß VD VD β2a(C3.4S) PTX β2b β**2c** βARK-ct . β**2d** β3

Figure 1. Diagram of inhibitory signaling to Ca_v2.2 channels by acetylcholine muscarinic receptors. (A) M_1 and M_2 muscarinic receptors suppress Ca_v2.2 current via different pathways. M_1R suppresses Ca_v2.2 currents through both PIP₂-dependent VI and G $\beta\gamma$ -mediated VD pathways, while M_2R suppresses currents only through the G $\beta\gamma$ -mediated VD pathway. The G $\beta\gamma$ scavenger β ARK-ct inhibits the G $\beta\gamma$ -mediated pathway and PTX inhibits M_2 receptor signaling by blocking the activation of $G_{i/o}$ proteins. (B) M_1R modulates Ca_v2.2 channels through two separate pathways independently. The predominance of each type of modulation is determined by the Ca_v β subunit. Membrane-associated β subunits decrease PIP₂-dependent VI regulation and enhance G $\beta\gamma$ -mediated VD regulation. The cytosolic β subunit increases VI regulation and decreases the effects of VD regulation. Thick line: major inhibitory pathway. Thin line: minor or weak inhibitory pathway. AC, adenylyl cyclase; PLC, phospholipase C; PTX, pertussis toxin; VD, voltage-dependent inhibition; VI, voltage-independent inhibition. Images are modified from the original work ^[31].

and triggers fast current inhibition ^[17]. Since the GBy binding to the $\alpha 1B$ subunit slows channel activation and shifts the voltage dependence of the channel opening towards a positive charge, a stronger depolarization of the plasma membrane is needed for the Cav2.2 channels to open. This inhibition can be relieved by supplying a large depolarizing pulse ^[18, 19] and is thus referred to as "voltage-dependent" (VD) ^[15]. The second pathway, for G_qPCRs, depends on phosphatidylinositol 4.5-bisphosphate (PIP₂) hydrolysis by phospholipase C (PLC) [20-22] and/or arachidonic acid (AA) generation by phospholipase A2 (PLA2) activation [23] following $G\alpha_{q/11}$ subunit activation. This pathway is responsible for relatively slow and voltage-independent (VI) Ca²⁺channel inhibition. The role of the G $\beta\gamma$ subunit in G_qPCR modulation of Ca_V2.2 channels remains unclear. It is possible that the G $\beta\gamma$ subunit released from the G_{q/11} protein can produce fast and voltage-dependent inhibition of the Cav2.2 current [21, 22, 24-26].

Previous studies have revealed that the slow component of $Ca_V 2.2$ channel modulation by the $G_{q/11}$ -coupled M_1 muscarinic acetylcholine receptor (M_1R) relies on PIP₂ depletion through $G\alpha_q$ /PLC activation and that the $Ca_V\beta$ subunit is an important regulator of the muscarinic modulation of the channel ^[13, 22]. Indeed, since G_qPCRs

activation accompanies many downstream signals, such as $Ca^{2\scriptscriptstyle +}$ release from the endoplasmic reticulum and PKC activation via diacylglycerol generation, discriminating between PIP₂ effects and those of other signals is almost impossible. However, with the aid of several genetically encoded tools, such as voltage-sensing phosphatase from zebra fish (Dr-VSP) [22, 27, 28] and the chemically-inducible dimerization system (Lyn-FRB/FKBP-Inp54p) [29] which 5-phosphate of PIP₂ to cleaves the generate phosphatidylinositol 4-monophosphate (PIP) on demand, the contribution of PI(4,5)P2 depletion alone to Cav channel inhibition was uncovered in single cells. Interestingly, M₁R activation resulted in stronger Ca_V current inhibition than direct PI(4,5)P₂ depletion through Dr-VSP activation or through the rapamycin inducible dimerization system, which implies that pathways besides $G\alpha_0/PLC$ are involved. To verify this hypothesis, N-type Cav2.2 channels, those are regulated by both VI and VD pathways, were studied ^[30]. We also adopted C-terminus of β-adrenergic receptor kinase (β ARK-ct) as a G $\beta\gamma$ subunit scavenger ^[25, 31, 32]. When Ba²⁺ currents were measured in tsA201 cells expressing M₁R, Ca_V $\alpha 1B$, $\alpha 2\delta 1$ and $\beta 2a$ subunits upon muscarinic stimulation, the co-expression of BARK-ct resulted in the disappearance of the VD component of M₁R-induced inhibition; channel inhibition was consequently attenuated to the level due to

Dr-VSP activation alone (approximately10% of total). Similarly, substituting $G\beta\gamma$ -insensitive chimeric Ca_v2.2 (α 1C-1B) for the wild type Ca_v α 1B subunit also decreased M₁R-induced Ca_v current depression. In contrast, pertussis-toxin (PTX) sensitive Ga_{i/o}-coupled M₂R-induced Ca_v2.2 current inhibition was completely abolished by the co-expression of β ARK-ct. Therefore, we concluded that unlike M₂R that mainly inhibits Ca_v2.2 channels through G $\beta\gamma$ -mediated VD pathway, M₁R inhibits the channels through both VI and VD components, such that the VI component is subject to G α_q /PLC activation followed by PIP₂ depletion, while the VD component is mainly affected by the G $\beta\gamma$ subunit (**Fig. 1 A**).

To further examine the two M₁R-mediated regulatory pathways, we simultaneously measured FRET (Förster resonance energy transfer) between the eCFP- and eYFP-tagged pleckstrin homology (PH) domain from phospholipase C- δ (PH-PLC δ), which sufficiently reflects the extent of plasma membrane PIP_2 ^[22, 33-36], and $Ca_V 2.2$ current inhibition in single control and BARK-ct-expressing cells. In this single cell assay, Cav2.2 current depression due to M₁R activation was attenuated in cells co-expressing β ARK-ct by approximately 50%. In addition, we found that current inhibition started 3-4 s before PIP₂ hydrolysis in control cells, but not in *βARK*-ct expressing cells, where current inhibition and PIP₂ hydrolysis started at almost the same time. Although we did not find any differences in the kinetics of current inhibition and PIP₂ hydrolysis between control and BARK-ct expressing cells, we did discriminate between the fast ($\tau = 1.6$ s) and slow ($\tau = 4.1$ s) components of M₁R induced Ca_V2.2 inhibition by subtracting the scaled Cay current of BARK-ct co-expressing cells from that of control cells, considering 'lag time'. The findings clearly indicated that M1R activation mediates both slow and fast N-type Ca_V2.2 current suppression through the $G\alpha_{q/11}$ and Gβγ subunits, respectively. Furthermore, our findings suggest that under physiological conditions, the downstream effects of G_qPCRs may be affected by the duration, frequency or intensity of stimulation.

As mentioned earlier, the $Ca_V\beta$ subunit determines the $Ca_V2.2$ channel modulation by membrane PIP₂ turnover^[13]. $Ca_V2.2$ channels expressed with membrane-localized β subunits were only very slightly inhibited by PIP₂ depletion while channels expressed with cytosolic β subunits were dramatically inhibited by PIP₂ depletion. Additionally, we also realized that the extent of M₁R-induced VI or VD inhibition of N-type Ca_V current varied with the β subunit isotype expressed. This was confirmed by measuring the Ca_V2.2 current suppression by M₁R in cells transfected with $\alpha 2\delta 1$, $\beta 2a$, palmitoylation resistant mutant $\beta 2a(C3,4S)$, $\beta 2b$,

β3 or membrane targeted Lyn-β3. Firstly, VD inhibition by M₁R was measured by applying a strong depolarizing pulse between the pre- and post-test pulses with and without the presence of a muscarinic receptor agonist. Current inhibition in cells co-expressing membrane-localized β2a or chimeric Lyn-β3 was approximately 30%, while the inhibition in cells with cytosolic β2b, β2a(C3,4S) or β3 was 11-15%. However, the PIP₂ dependence of the current inhibition was 10-25% and 41-59% for membrane-localized and cytosolic β subunits, respectively. As depicted in **Fig. 1 B**, although Cav2.2 channels are inhibited by both VI and VD pathways, the channels with membrane-localized β subunits are more sensitive to the Gβγ-mediated VD pathway, whereas cytosolic β subunits are largely affected by the PIP₂-dependent VI pathway.

As shown above, our study demonstrates that i) G_qPCR M_1R inhibits N-type $Ca_V2.2$ channels via both $G\beta\gamma$ -mediated VD and $G\alpha_{q/11}/PLC$ -mediated VI pathways, ii) these two pathways can be temporally separated, and iii) the cellular location of $Ca_V\beta$ subunits is critical to the determination of the voltage-dependency of $Ca_V2.2$ channel modulation by G_qPCRs . Because the expression of β subunits varies spatially and temporally in brain tissues ^[21, 22, 24, 26, 37-42], $Ca_V2.2$ modulation by G_qPCRs can also be gradated. Hereby, our research proposes a novel G_qPCR -mediated signaling pathway for $Ca_V2.2$ channel modulation that extends previous observations that Ca_V channels can be regulated by multiple signals ^[43-46].

Conflict of Interests

We declare there is no potential conflict of interests.

Acknowledgements

This work was supported by the Ministry of Education, Science & Technology (No. 2012R1A1A2044699) and the DGIST R&D Program of the Ministry of Science, ICT&Future Planning (No. 14-BD-06).

References

- Wheeler DB, Randall A, Tsien RW. Roles of N-type and Q-type Ca²⁺ channels in supporting hippocampal synaptic transmission. Science 1994; 264:107-111.
- Normann C, Peckys D, Schulze CH, Walden J, Jonas P, Bischofberger J. Associative long-term depression in the hippocampus is dependent on postsynaptic N-type Ca²⁺ channels. J Neurosci 2000; 20:8290-8297.
- Wheeler DG, Groth RD, Ma H, Barrett CF, Owen SF, Safa P, *et al.* Cav1 and Cav2 channels engage distinct modes of Ca²⁺ signaling to control CREB-dependent gene expression. Cell 2012; 149:1112-1124.

http://www.smartscitech.com/index.php/rci

- Westenbroek RE, Hell JW, Warner C, Dubel SJ, Snutch TP, Catterall WA. Biochemical properties and subcellular distribution of an N-type calcium channel α1 subunit. Neuron 1992; 9:1099-1115.
- Westenbroek RE, Hoskins L, Catterall WA. Localization of Ca²⁺ channel subtypes on rat spinal motor neurons, interneurons, and nerve terminals. J Neurosci 1998; 18:6319-6330.
- Mori Y, Nishida M, Shimizu S, Ishii M, Yoshinaga T, Ino M, *et al*. Ca²⁺ Channel α1B subunit (Cav2.2) knockout mouse reveals a predominant role of N-type channels in the sympathetic regulation of the circulatory system. Trends Cardiovasc Med 2002; 12:270-275.
- Beuckmann CT, Sinton CM, Miyamoto N, Ino M, Yanagisawa M. N-type calcium channel α1B subunit (Cav2.2) knock-out mice display hyperactivity and vigilance state differences. J Neurosci 2003; 23:6793-6797.
- Newton PM, Orr CJ, Wallace MJ, Kim C, Shin H-S, Messing RO. Deletion of N-type calcium channels alters ethanol reward and reduces ethanol consumption in mice. J Neurosci 2004; 24:9862-9869.
- Kim C, Jeon D, Kim Y-H, Lee CJ, Kim H, Shin H-S. Deletion of N-type Ca²⁺ channel Cav2.2 results in hyperaggressive behaviors in mice. J Biol Chem 2009; 284:2738-2745.
- Hofmann F, Lacinová L, Klugbauer N. Voltage-dependent calcium channels: From structure to function. Reviews of Physiology, Biochemistry and Pharmacology. Volume 139. Berlin: Springer Berlin Heidelberg; 1999:33-87.
- 11. Yasuda T, Chen L, Barr W, McRory JE, Lewis RJ, Adams DJ, *et al.* Auxiliary subunit regulation of high-voltage activated calcium channels expressed in mammalian cells. Eur J Neurosci 2004; 20:1-13.
- Catterall WA. Structure and regulation of voltage-gated Ca²⁺ channels. Annu Rev Cell Dev Biol 2000; 16:521-555.
- Hurley JH, Cahill AL, Currie KP, Fox AP. The role of dynamic palmitoylation in Ca²⁺ channel inactivation. Proc Natl Acad Sci U S A 2000; 97:9293-9298.
- Suh BC, Kim DI, Falkenburger BH, Hille B. Membrane-localized β-subunits alter the PIP₂ regulation of high-voltage activated Ca²⁺ channels. Proc Natl Acad Sci 2012; 109:3161-3166.
- 15. Hille B. Modulation of ion-channel function by G-protein-coupled receptors. Trends Neurosci 1994; 17:531-536.
- Zamponi GW, Currie KPM. Regulation of Cav2 calcium channels by G protein coupled receptors. Biochim Biophys Acta 2013; 1828:1629-1643.
- Agler HL, Evans J, Tay LH, Anderson MJ, Colecraft HM, Yue DT. G protein-gated inhibitory module of N-type (Cav2.2) Ca²⁺ channels. Neuron 2005; 46:891-904.
- Bean BP. Neurotransmitter inhibition of neuronal calcium currents by changes in channel voltage dependence. Nature 1989; 340:153-156.
- Elmslie KS, Zhou W, Jones SW. LHRH and GTPγS modify calcium current activation in bullfrog sympathetic neurons. Neuron 1990; 5:75-80.
- Wu L, Bauer CS, Zhen X, Xie C, Yang J. Dual regulation of voltage-gated calcium channels by PtdIns(4,5)P₂. Nature 2002; 419:947-952.

- 21. Gamper N, Reznikov V, Yamada Y, Yang J, Shapiro MS. Phosphatidylinositol 4,5-bisphosphate signals underlie receptor-specific $G_{q/11}$ -mediated modulation of N-type Ca^{2+} channels. J Neurosci 2004; 24:10980-10992.
- 22. Suh BC, Leal K, Hille B. Modulation of high-voltage activated Ca²⁺ channels by membrane phosphatidylinositol 4,5-bisphosphate. Neuron 2010; 67:224-238.
- Liu L, Rittenhouse AR. Arachidonic acid mediates muscarinic inhibition and enhancement of N-type Ca²⁺ current in sympathetic neurons. Proc Natl Acad Sci U S A 2003; 100:295-300.
- 24. Kammermeier PJ, Ruiz-Velasco V, Ikeda SR. A voltage-independent calcium current inhibitory pathway activated by muscarinic agonists in rat sympathetic neurons requires both $G\alpha_{q/11}$ and $G\beta\gamma$. J Neurosci 2000; 20:5623-5629.
- Melliti K, Meza U, Adams BA. RGS2 blocks slow muscarinic inhibition of N-type Ca²⁺ channels reconstituted in a human cell line. J Physiol 2001; 532:337-347.
- Vivas O, Castro H, Arenas I, Elías-Viñas D, García DE. PIP₂ hydrolysis is responsible for voltage independent inhibition of Cav2.2 channels in sympathetic neurons. Biochem Biophys Res Commun 2013; 432:275-280.
- Murata Y, Iwasaki H, Sasaki M, Inaba K, Okamura Y. Phosphoinositide phosphatase activity coupled to an intrinsic voltage sensor. Nature 2005; 435:1239-1243.
- 28. Falkenburger BH, Jensen JB, Hille B. Kinetics of PIP₂ metabolism and KCNQ2/3 channel regulation studied with a voltage-sensitive phosphatase in living cells. J Gen Physiol 2010; 135:99-114.
- Suh BC, Inoue T, Meyer T, Hille B. Rapid chemically induced changes of PtdIns(4,5)P₂ gate KCNQ ion channels. Science 2006; 314:1454-1457.
- 30. Keum D, Baek C, Kim DI, Kweon HJ, Suh BC. Voltage-dependent regulation of Cav2.2 channels by G_q -coupled receptor is facilitated by membrane-localized β subunit. J Gen Physiol 2014;144:297-309.
- Koch WJ, Inglese J, Stone WC, Lefkowitz RJ. The binding site for the βγ subunits of heterotrimeric G proteins on the β-adrenergic receptor kinase. J Biol Chem 1993; 268:8256-8260.
- 32. Koch WJ, Hawes BE, Allen LF, Lefkowitz RJ. Direct evidence that G_i -coupled receptor stimulation of mitogen-activated protein kinase is mediated by $G_{\beta\gamma}$ activation of p21^{ras}. Proc Natl Acad Sci U S A 1994; 91:12706-12710.
- Wal J van der, Habets R, Várnai P, Balla T, Jalink K. Monitoring agonist-induced phospholipase C activation in live cells by fluorescence resonance energy transfer. J Biol Chem 2001; 276:15337-15344.
- 34. Jensen JB, Lyssand JS, Hague C, Hille B. Fluorescence changes reveal kinetic steps of muscarinic receptor-mediated modulation of phosphoinositides and Kv7.2/7.3 K⁺ channels. J Gen Physiol 2009; 133:347-359.
- 35. Falkenburger BH, Dickson EJ, Hille B. Quantitative properties and receptor reserve of the DAG and PKC branch of G_q -coupled receptor signaling. J Gen Physiol 2013; 141:537-555.
- Itsuki K, Imai Y, Hase H, Okamura Y, Inoue R, Mori MX. PLC-mediated PI(4,5)P₂ hydrolysis regulates activation and inactivation of TRPC6/7 channels. J Gen Physiol 2014; 143:183-201.

http://www.smartscitech.com/index.php/rci

- 37. Hullin R, Singer-Lahat D, Freichel M, Biel M, Dascal N, Hofmann F, *et al.* Calcium channel beta subunit heterogeneity: functional expression of cloned cDNA from heart, aorta and brain. EMBO J 1992; 11:885-890.
- Pichler M, Cassidy TN, Reimer D, Haase H, Kraus R, Ostler D, *et al.* β subunit heterogeneity in neuronal L-type Ca²⁺ channels. J Biol Chem 1997; 272:13877-13882.
- Scott VE, De Waard M, Liu H, Gurnett CA, Venzke DP, Lennon VA, *et al.* β subunit heterogeneity in N-type Ca²⁺ channels. J Biol Chem 1996; 271:3207-3212.
- 40. Heneghan JF, Mitra-Ganguli T, Stanish LF, Liu L, Zhao R, Rittenhouse AR. The Ca²⁺ channel beta subunit determines whether stimulation of G_q-coupled receptors enhances or inhibits N current. J Gen Physiol 2009; 134:369-384.
- Vance CL, Begg CM, Lee WL, Haase H, Copeland TD, McEnery MW. Differential expression and association of calcium channel α1B and β subunits during rat brain ontogeny. J Biol Chem 1998; 273:14495-14502.

- 42. Wittemann S, Mark MD, Rettig J, Herlitze S. Synaptic localization and presynaptic function of calcium channel β_4 -subunits in cultured hippocampal neurons. J Biol Chem 2000; 275:37807-37814.
- 43. Swartz KJ. Modulation of Ca²⁺ channels by protein kinase C in rat central and peripheral neurons: disruption of G protein-mediated inhibition. Neuron 1993; 11:305-320.
- 44. Zamponi GW, Bourinet E, Nelson D, Nargeot J, Snutch TP. Crosstalk between G proteins and protein kinase C mediated by the calcium channel α_1 subunit. Nature 1997; 385:442-446.
- 45. Hamid J, Nelson D, Spaetgens R, Dubel SJ, Snutch TP, Zamponi GW. Identification of an integration center for cross-talk between protein kinase C and G protein modulation of N-type calcium channels. J Biol Chem 1999; 274:6195-6202.
- 46. Magga JM, Jarvis SE, Arnot MI, Zamponi GW, Braun JE. Cysteine string protein regulates G protein modulation of N-type calcium channels. Neuron 2000; 28:195-204.