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Characteristics of the OSBP-related protein family 

The functions of lipids as signaling compounds and their 

interorganelle transport are topics that have recently moved 

to the center stage of cell biological and biomedical research. 

In this context the concept of membrane contact sites (MCS), 

sites of close apposition of organelle membranes, is an 

emerging major theme. An increasing number of studies 

have revealed crucial roles of such contacts as sites with 

prominent functions in interorganelle lipid transport and 

metabolism as well as signaling nodes, and molecular 

machineries operating at MCSs are being identified 

(reviewed by [1-4]). One of the protein families reported to 

localize at membrane contacts are the Oxysterol-binding 

protein/OSBP-related proteins (ORPs), sterol/phospholipid 

binding proteins implicated in a variety of cellular functions: 

lipid metabolism and transport, vesicle transport and 

signaling cascades [5,6].  

The unifying feature of the ORPs is a unique -barrel-like 

OSBP-related ligand-binding domain (ORD; [7, 8]), which 

mediates binding of sterols and/or phospholipids [9-12]. In 

addition, most of the ORPs pertain a FFAT (two 

phenylalanines in an acidic tract) motif, which mediates 

interaction with VAMP-associated proteins (VAPs), type II 

integral membrane proteins of the endoplasmic reticulum 

(ER) [13-16]. Alternatively, certain ORPs carry a 

carboxy-terminal trans-membrane segment, which targets the 

ER [17, 18]. In addition to ER-targeting determinants, most 

ORPs have an amino-terminal pleckstrin homology (PH) 

domain, which interacts with phosphoinositide species at 

specific organelle membranes [19]. This dual targeting mode 

of the ORPs has indicated a functional role of these proteins 

at MCSs [20-26]. The PH domain-containing ORPs are 

designated ‘long’ (L), while those lacking a PH domain are 

categorized as ‘short’ (S). 

A break-through in understanding the structure and 

function of ORPs was achieved when the structure of a 

‘short’ subtype yeast ORP, Osh4p, in complex with 

ergosterol, cholesterol, and 7-, 20- and 

25-hydroxycholesterol, was solved [8]. The analysis revealed 

a -barrel-like fold that accommodates a bound sterol with 

the 3-hydroxyl group facing the bottom of the 

ligand-binding pocket and a lid structure that closes the 

pocket and thereby stabilizes the ligand-bound conformation 

of Osh4p. The human ORPs studied thus far show varying 

affinities for different oxysterols with Kds in the nM-µM 

range and but also bind cholesterol with a somewhat lower 

affinity [20, 27, 28]. For example OSBP, the archetype member of 

the ORP family, binds 25-hydroxycholesterol (25OHC) with 

Kd of 10 nM [9, 10, 29] in comparison to Kd of 170 nM for 

cholesterol [11, 30]. Similar to OSBP, OSBP2/ORP4 and ORP1 

display a high affinity for 25OHC, whereas a close homologue 
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of ORP1, ORP2, shows only a low affinity (Kd=3.9 M) for 

this oxysterol but a high affinity for 22(R) OHC [27, 31]. 

Interestingly, ORP9 was found not to bind 25OHC, 

cholesterol being thus far the only sterol it has been shown to 

interact with [32]. Furthermore, not all ORPs may have the 

capacity to bind sterols: Yeast Osh3p [33], Osh6p and Osh7p 
[34] were suggested to be selective for glycerophospholipid 

ligands. 

Subcellular localization of ORP-VAP complexes is 

regulated by sterol ligands 

The distinct intracellular distributions of the ORP family 

members suggest specific functions of these proteins at 

distinct subcellular locations. Due to the capacity of several 

ORPs to simultaneously bind two distinct organelle 

membranes – ER and non-ER ones – they are reported to 

localize at MCSs ([35, 36]; Figure1). OSBP-VAP complexes 

anchored to the ER via VAP have been shown to colocalize 

with the Golgi apparatus at sites that most likely represent 

ER-Golgi MCSs, this localization being enhanced by 25OHC 

liganding of OSBP or cellular sterol depletion. Such 

treatments also induce a clustering of Golgi membranes in a 

condensed juxtanuclear arrangement ([35-37]; Figure 1). Earlier 

studies suggested that a conformational change in OSBP 

triggered by 25OHC binding enables PI4P-mediated 

membrane targeting of the protein via the PH domain and 

thereby enhances the localization of OSBP at Golgi [37, 38]. 

The study of Mesmin et al. [12] provided evidence that OSBP 

in fact acts as a bidirectional transporter of cholesterol and 

PI4P at the ER-Golgi interface. The ORD of OSBP 

transports cholesterol forward from the ER to the Golgi 

membranes and PI4P in the opposite direction; The PI4P is 

hydrolyzed in the ER, which is suggested to provide a means 

or energizing the forward transport of cholesterol. The PI4P 

in Golgi membranes also has another function: OSBP-VAP 

complexes target the Golgi via binding of its PH domain to 

PI4P. The authors also showed that binding of 25OHC to 

OSBP inhibits its lipid transporter function, suggesting that 

the localization of OSBP at clustered juxtanuclear Golgi 

membranes in 25OHC-treated cells does not reflect an 

activation of OSBP’s lipid transport function but rather that 

the high-affinity oxysterol ligand occupies the ligand pocket, 

locks the protein at the Golgi, and precludes its dynamic lipid 

transfer function [12]. In addition to a lipid transporter 

function such as that described above, ORP-VAP complexes 

have been reported to organize lipid modifying enzymes at 

MCSs [25, 26]. 

Besides OSBP, ORP9L (long variant of ORP9) is another 

ORP family member associated with ER and Golgi 

membranes. Endogenous cellular ORP9L was localized to 

Golgi membranes, and ORP9 was shown to mediate 

PI4P-dependent transfer of cholesterol in vitro [32]. On the 

other hand, overexpressed ORP9L and ORP9L-VAP 

complexes have been localized to aberrant enlarged ER 

structures [36, 39]. In contrast, a sterol-binding deficient 

mutant, ORP9L (DLTK), in complex with VAP, distributed 

at normal-appearing ER and Golgi compartments (Figure 1). 

These quite distinct localization patterns suggest a crucial 

role of sterol liganding in the function of ORP9L. This 

protein could act in concert with OSBP in lipid transport at 

ER-Golgi MCSs, and insertion of cholesterol within the 

ORD of ORP9L most likely induces a conformational change 

that alters the subcellular targeting of ORP9L-VAP 

complexes and their putative interactions with other protein 

Figure 1. Ligand binding of ORP proteins (1) alters the subcellular targeting of ORP–VAP 
complexes (ORP2, ORP4, ORP9), (2) modifies organelle morphology (OSBP, ORP1, ORP2, ORP9) 
and (3) regulates organelle movement or distribution (ORP1, ORP2). 
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and/or lipid partners. 

The closest homologue of OSBP is OSBP2/ORP4; Like 

OSBP and ORP9, this protein carries a FFAT motif for ER 

targeting but associates prominently with vimentin 

intermediate filaments and to a lesser extent with the plasma 

membrane ([28, 35, 36, 40]; Figure 1). The association of 

ORP4-VAP complexes with the plasma membrane is 

enhanced under sterol depletion conditions (Figure 1). The 

plasma membrane sites harboring these complexes may 

represent sites engaged in active signal transduction, as 

ORP4 was reported to play an essential role the 

viability/proliferation of several cell types [36, 41]. The role of 

ORP4-VAP complexes associated with vimentin filaments is 

poorly understood, but previous studies show a 

reorganization of vimentin filaments to bundle-like structures 

in cells overexpressing ORP4 [28, 40]. One can envision that 

ORP4-VAP complexes at the vimentin network represent 

contacts of the ER with vimentin, with an unknown function. 

Moreover, they could mediate the reported involvement of 

vimentin in Golgi organization, endo-lysosomal protein 

sorting and/or cholesterol/shingolipid metabolism [42-46]. 

ORP1L-VAP complexes bring ER membrane into contact 

with late endosomes (LE) and lysosomes via the interaction 

of ORP1 with the LE GTPase Rab7. Together with Rab7 and 

its second effector protein, RILP (Rab7-interacting 

lysosomal protein), which connects directly to 

dynein/dynactin motor complexes, ORP1L regulates the 

mobility and subcellular distribution of LE ([20, 24, 36, 47]; 

Figure 1). Cellular sterol depletion or overexpression of a 

sterol binding deficient mutant ORP1L(ELSK) increases 

ER-LE contacts which results in smaller scattered LEs with 

reduced motility [20, 24, 36], while overexpression of the 

wild-type ORP1L induces clustering and fusion of LE driven 

to the juxtanuclear region of cells by microtubule-dependent 

transport (Figure 1). Why the ER association and motility of 

LE should be regulated by the cellular sterol status has 

remained poorly understood. However, a plausible 

hypothesis is that a more intimate communication of the 

major lipid synthetic subcellular organelle, the ER, with 

endosomes is required under sterol depletion conditions. 

ORP2 is the closest homologue of ORP1; unlike all other 

human ORPs, this protein is only present as a ‘short’ variant 

that lacks a PH domain. ORP2-VAP complexes localize at 

ER domains that interact with lipid droplets ([27, 36]; Figure 1). 

Binding of the high-affinity oxysterol ligand 22(R)OHC 

releases ORP2 from the lipid droplet surface, whereas sterol 

binding deficient ORP2(ELSK)-VAP complexes cause 

increased clustering of lipid droplets in the perinuclear region 

of cultured hepatocytes [27, 35, 36]. This sterol-dependent 

localization of ORP2-VAP complexes most likely impacts 

neutral lipid metabolism as RNA interference experiments 

suggested that ORP2-VAP complexes promote the synthesis 

and inhibit the hydrolysis of cellular triglycerides [36]. Of 

note, the subcellular localization of ORP2-VAP complexes is 

upon 22(R)OHC treatment shifted from bulky ER elements 

decorated with lipid droplets to a more diffuse pattern with 

membrane rings encircling lipid droplets and plasma 

membrane aspects, suggesting that reduction of the lipid 

droplet affinity of ORP2-VAP complexes allows their more 

dynamic redistribution [35].  

Conclusions 

ORP-VAP complexes constitute part of the newly 

discovered molecular machinery operating in the lipid 

transport and signaling events at membrane contact sites. In 

addition to acting as lipid transporters, ORP-VAP complexes 

organize protein complexes with lipid modifying enzymatic 

activity at MCSs. Sterol binding by ORPs not only represents 

an interaction with a lipid substrate to be transported, but 

also acts as a regulatory switch between different modes of 

localization and function of ORP-VAP complexes. 
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