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The pregnane X receptor (PXR) is an orphan nuclear receptor that regulates the expression of phase I and phase 

II drug metabolizing enzymes and transporters involved in the absorption, distribution, metabolism, and 

elimination of xenobiotics. PXR is expressed predominantly in the liver and intestine and resembles cytochrome 

P450s (CYPs), which is a phase I drug metabolizing enzyme. It is estimated that CYP 3As and CYP2Cs 

metabolize > 50% of all prescription drugs. PXR upregulates gene expression of these CYPs. Therefore, PXR 

plays a crucial role detoxifying xenobiotics and could potentially have effects on drug-drug interactions. PXR is 

reportedly responsible for activating a variety of target genes through cross-talk with other nuclear receptors 

and coactivators at transcriptional and translation levels. Recent findings have demonstrated the regulatory role 

of PXR and show the potential use of a PXR antagonist during drug therapy. In addition, genetic variations in 

the PXR gene are associated with the pharmacological effects of several drugs, and inter-individual differences 

in the clinical response are likely to be understood through these PXR polymorphisms. Many approaches have 

been used to explain the PXR regulatory mechanisms, such as microRNA-mediated PXR post-translational 

regulation and diverse PXR haplotype analysis. Understanding these PXR polymorphisms may lead to 

improving personalized therapeutic treatments. 
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Introduction 

The pregnane X receptor (PXR) is a member of the 

nuclear receptor (NR) superfamily of ligand-activated 

transcription factors and regulates the expression of phase I 

and phase II drug/xenobiotic metabolizing enzymes and 

transporters responsible for the absorption, distribution, 

metabolism, and elimination of xenobiotics and endogenous 

substrates [1-3]. PXR was first isolated from mouse liver in 

1998. Its orthologs in rats, rabbits, and humans have been 

identified and cloned. PXR is NR subfamily 1 group I 

member 2 in the standard nomenclature, along with the 

pregnane-activated receptor (PAR) and the steroid and 

xenobiotic receptor [1, 4-6]. Similar to other orphan NRs, PXR 

possesses a common structural organization with a conserved 

N-terminal DNA-binding domain (DBD) and a 

ligand-binding domain (LBD). The DBD is characterized by 

two zinc fingers, which link the receptor to the specific 

promoter regions of its target genes [7].  

REVIEW 
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However, compared with other NRs, PXR contains a 

bulky and flexible ligand-binding cavity that accommodates 

molecules of various shapes and sizes, including drugs, 

natural products, dietary supplements, environmental 

pollutants, endogenous hormones, and bile acids [8]. PXR is 

expressed in a wide range of human tissues, including liver, 

intestine, colon, kidney, ovary, breast, prostate, mononuclear 

blood cells, placenta, bone marrow, spinal cord, stomach and 

heart as well as numerous types of carcinoma tissues, 

including breast cancer, ovarian cancer, endometrial cancer, 

colon cancer, prostate cancer, and osteosarcoma [9, 10] The 

orphan NRs have emerged as transcriptonal regulators of 

target genes through co-activator recruitment [11].  

Increasing evidence suggests that PXR regulates not only 

drug metabolism and disposition but also physiological and 

pathophysiological processes, such as glucose metabolism, 

lipid metabolism, bile acid homeostasis, cancer, diabetes, 

inflammatory diseases, metabolic diseases and liver diseases 
[12-15]. Therefore, any genetic variations in PXR that play a 

role detoxifying xenobiotics could potentially have 

widespread effects on endocrine signaling pathways and 

could explain interindivdual variations in response [16]. The 

purpose of this review is to highlight recent findings on the 

functions of PXR regulating drug metabolizing enzymes 

(DMEs) and transporters and the implications of these 

functions under both physiological and pathological 

conditions.  

Regulation of drug-metabolizing enzymes 

PXR regulates phase I DMEs  

Phase I DMEs are responsible for catalyzing the oxidation, 

reduction, and hydrolysis, which are the first step in the 

detoxification of xenobiotics by converting lipophilic 

compounds into more soluble derivatives suitable for 

excretion [17, 18]. Among phase I DMEs, the cytochrome P450 

(CYPs; P450s) superfamily, which is abundant in the liver, 

gastrointestinal tract, lung, and kidney, is the most important 

family of enzymes mono-oxygenating lipophilic compounds. 

In fact, CYP2B6 and CYP2C metabolize approximately 25% 

and 20% of all xenobiotics, respectively [19]. CYP3A4 alone 

has been estimated to metabolize 50–60% of all prescription 

drugs [20, 21]. PXR is the predominant up-regulator of 

CYP3A4 gene expression by binding to several specific 

elements in the 5' upstream regulatory region of the gene. 

Many CYP3A4 substrates are also human PXR activators [22]. 

In addition, PXR regulates the expression of genes encoding 

phase I enzymes, such as CYP2B6, CYP2B9, CYP2C8, 

CYP2C9, and CYP2C19, as well as CYP3A family members 

in various species [23-26].  

PXR regulates phase II DMEs  

In addition to phase I enzymes, PXR transcriptionally 

activates a variety of target genes, such as phase II 

conjugative enzymes and drug transporters [27]. Phase II 

enzymes add charged species onto xenobiotics or their phase 

I metabolites, primarily through methylation, esteration, 

acetylation, glucuronidation, sulfation, and conjugation with 

glutathione or amino acid. Phase II products are usually 

highly water-soluble; therefore, they are more readily 

excreted through biliary and urinary pathways. These 

enzymes include quinone reductases, NAD(P)H:menadione 

reductases, methyltransferases, epoxide hydrolases, 

N-acetyltransferases, glutathione S-transferases, 

uridine-5'-diphosphate glucuronosyl transferase, and 

sulfotransferases [28].  

PXR is also involved in regulating drug transporters 

responsible for both efflux and uptake of endogenous and 

exogenous chemicals. Activated PXR regulates phase III 

drug transporter gene products, including numerous 

ATP-binding cassette (ABC) membrane pumps of the 

multidrug resistant family [MDR1] (also known as 

P-glycoprotein [P-gp] or ABCB1), multidrug 

resistant-associated protein (MRP), organic anion 

transporting protein 1A4 (OATP1A4), and OATP2 [29-32]. 

Phase I DMEs, phase II DMEs, and drug transporters 

together mediate the metabolism and elimination of various 

endobiotics and xenobiotics including drugs and toxicants, 

sometimes leading drug-drug interactions (DDI).  

PXR coordinately regulates a large number of genes 

encoding drug metabolizing enzymes and transporters in the 

liver and intestine that are involved in all aspects of 

detoxification and elimination of xenobiotics and lead to 

undesirable DDI by increasing drug toxicity and decreasing 

therapeutic efficacy [33]. In summary, PXR induces key 

enzymes, such as CYP 2B6, CYP3A4, and UGT1A1, which 

are involved in the metabolism of over 80% of clinically 

used drugs [34]. Therefore, induction of these enzymes 

contributes to increased enzyme expression, followed by 

DDI. Thus, elucidating the mechanisms underlying gene 

expression of key enzymes is important for developing safer 

medicines [35]. 

Implications of PXR in DDIs 

It is now known that many clinically relevant DDIs and 

herb-drug interactions involving the regulation of DMEs are 

mediated through the actions of PXR. The clinical response 

of PXR interactions with many xenobiotics have been 

demonstrated in a number of reports. Hyperporin is an active 

constituent found in St. John’s Wort (SJW), which is derived 
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from the flowering plant Hypericum perforatum, a popular 

herbal remedy used to treat a variety of conditions, including 

depression and inflammation [36, 37]. Hyperporin is a potent 

PXR agonist [38]. Although hyperporin inhibits CYP3A4 and 

P-gp in vitro [39], chronic use of hyperporin induces CYP3A 

by activating PXR [36]. Studies show that SJW induces 

CYP3A4 expression in the intestine [40] and in primary 

cultures of human hepatocytes [36]. A number of clinically 

important drug interactions have been reported in patients 

taking SJW. Induction of CYP3A4 enhances the metabolism 

of many therapeutic drugs, such as amitriptyline, 

cyclosporine, digoxin, indinavir, irinotecan, warfarin, 

phenprocoumon, alprazolam, dextrometorphane, simvastatin, 

and oral contraceptives [41-45]. Pregnenolone 16α-carbonitrile 

(PCN), which is a synthetic antiglucocorticoid, induces the 

CYP3A family [46, 47]. Rifampin is an inducer of CYP3A4 

and activates PXR. The features that numerous PXR ligands 

present across species permit species-specific activation of 

PXR. Rifampin and PCN induce CYP3A differently in 

rodents and humans [48]. For example, rifampin is a strong 

activator of PXR in humans and rabbits, whereas it is a weak 

activator of PXR in the mouse or rat. In contrast, PCN 

activate the mouse and rat PXR but has no effect on human 

PXR (hPXR) [49, 50].  

Inducing expression of CYP3A4 could make one drug 

accelerate the metabolism of a second medicine. Rifampin 

increases the metabolism of antihypertensive drugs, such as 

verapamil, by inducing CYP3A4 and reduces the therapeutic 

effect of verapamil by reducing the oral bioavailability of 

(S)-verapamil by 90% during long-term treatment [51, 52]. In 

addition, rifampin decreases the level of digoxin by inducing 

P-gp protein expression [53]. Similar to CYP3A4, 

PXR-dependent activation of P-gp by rifampin has been 

demonstrated [32].  

PXR can also be activated by several chemotherapeutic 

agents, including paclitaxel [23] and cisplatin [54]. Synold et al. 

showed that paclitaxel-activated hPXR induced hepatic 

expression of CYP3A4 and CYP2C8, as well as MDR1 

expression in intestinal tumor cells resulting in enhanced 

metabolism of paclitaxel by CYP3A4 and CYP2C8, and 

excretion from the intestine via P-gp. The hPXR-mediated 

paclitaxel clearance pathway may lead to increased intestinal 

excretion and resistance to paclitaxel. In contrast, docetaxel, 

a taxane analog, does not activate PXR or PXR-mediated 

drug clearance. This difference demonstrates that docetaxel 

has superior pharmacokinetic properties to those of paclitaxel, 

although both drugs have similar antineoplastic activity [23].  

CYP2C9 is the second most abundantly expressed CYP in 

the liver and metabolizes approximately 16% of clinically 

prescribed drugs, such as phenytoin, tolbutamide, warfarin, 

torsemide, losartan, and several nonsteroidal 

anti-inflammatory agents [55]. Gerbal-Chaloin et al. showed 

that CYP2C8, CYP2C9, and CYP2C19 respond to the same 

inducers as CYP3A4 and CYP2B6 mediated by PXR. 

CYP2C8 and CYP2C9 mRNAs are coregulated in response 

to rifampin and phenobarbital as PXR is upregulated by 

glucocorticoids. CYP2C9 is induced by exposure to the same 

agents as CYP3A4 and CYP2B6, including dexamethasone, 

rifampin, and phenobarbital. Dexamethasone, which 

upregulates PXR expression, potentiates CYP2C8 and 

CYP2C9 mRNA induction in response to rifampicin and 

phenobarbital [26, 56]. Chen et al. showed that PXR mediates 

induction of CYP2C9 in the presence of rifampin, PCN, 

phenobarbital [55]. Rifampin is a potent hPXR ligand [57].  

The scope has widened to include many natural products 

after it was demonstrated that gugulipid, kava kava, Coleus 

forskolii, Hypoxis, Sutherlandia, Sweet Wormwood, 

Schisandra chinensis, and Glycyrrhiza are activators of 

PXR-mediated target gene expression [58]. PXR is also 

activated by vitamins E (tocopherol) and K2 [59, 60] . 

In addition to CYP2C9, PXR plays an important role 

regulating CYP2C19 expression. Lopinavir/ritonavir induces 

CYP2C19, CYP2C9 and CYP1A activities, and it is likely 

that PXR plays an important role regulating these DMEs [61]. 

Rifampin, which activates PXR, also induces CYP2C19 

mRNA and protein [26]. 

Intestinal P-gp and the 5'-upstream region of human 

MDR1 have been examined for the presence of potential 

PXR response elements, and PXR-mediated induction of 

MDR1 by rifampin has been investigated [32]. Concomitant 

use of rifampin and digoxin reduces plasma digoxin levels, 

which affects the actions of digoxin by inducing P-gp [53].  

MRP2 (ABCC2), which is expressed in liver, intestines 

and kidneys, is an efflux transporter of endogeneous 

substrates, such as bilirubin glucuronide, estrogens, 

glutathione conjugates, bile salts, and anthracycline 

chemotherapeutic agents. Kast et al. showed that hepatic 

MRP2 expression is induced by the PXR ligands rifampin 

and hyperforin [62].  

Clinical implications of a PXR antagonist 

Taken together, PXR contributes to DDIs, which can 

cause undesired results. Recent studies show that hPXR is a 

key modulator of the hepatotoxicity produced by rifampin 

and isoniazide co-therapy [63]. PXR activated by several 

antineoplastic drugs may contribute to drug resistance during 

anticancer chemotherapy [64]. PXR antagonists also have 

effects on drug metabolism and may be useful to prevent 
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DDIs and improve therapeutic efficacy. Further studies are 

necessary to determine whether PXR antagonists have 

clinical implications. Several PXR antagonists, such as 

ET-743, ketoconazole, fluconazole, eniconazole, FLB-12, 

sulforaphane, A-792611, polychlorinated biphenyls, 

coumestrol, aryl sulfonamides allyl isothiocyanate, and 

coumestrol, have been reported [23, 63, 65-74] and can improve 

drug effects and tolerance. 

Cross-talk between PXR and the constitutive androstane 

receptor (CAR) 

A variety of studies have shown that NRs cross-talk 

among themselves, demonstrating that the signaling 

pathways controlling drug metabolism are involved within a 

tangle of regulatory networks. Hepatocyte nuclear factor-4α 

(HNF-4α) and glucocorticoid receptor (GR) have an 

important role regulating the expression of other 

ligand-activated transcription factors, such as PXR, CAR, 

and farnesoid X receptor. For example, GR modulates PXR- 

and CAR-mediated induction of CYP2B, CYP2C, CYP3A, 

and GST genes [75-80]. HNF4α, GR, and CAR, crosstalk with 

PXR and co-activators to control target gene expression [81]. 

Unlike other NRs, PAR and CAR share some unique features, 

such as ligand promiscuity, species differences, and some of 

the response elements to regulate the many overlapping sets 

of target genes. Some studies have suggested that the 

mechanism of cross-regulation is through shared response 

elements between receptors [82, 83].  

Chen et al. provided supporting evidence that there is 

cross-talk between distal CAR/PXR sites and HNF-4α 

binding sites in the CYP2C9 promoter, and that proximal 

HNF-4α binding sites are required for optimal activation of 

the CYP2C9 promoter by both CAR and PXR. Two HNF-4α 

binding sites, located −185 and −152 bp from the translation 

start site, mediate transactivation of the CYP2C9 promoter 

and synergize with CAR/PXR [81]. HNF-4α is also an 

important determinant of PXR- and CAR-mediated induction 

of CYP3A4 by binding upstream of the PXR and CAR 

response elements in the CYP3A4 gene enhancer [2, 84].  

PXR pharmacogenetic effects 

Several studies have described genetic variations in the 

PXR gene, including other NRs, encoding for transporters 

and DMEs, and some of these have been associated with the 

pharmacological effects of several drugs [85-88], which is due 

to functional changes in NR expression. Therefore, it is 

likely that inter-individual variability in the clinical 

responses to several drugs will be understood through PXR 

genetic polymorphisms [89]. The hPXR gene is located on 

chromosome 3q12q13.3. The coding region consists of exons 

2–9, spanning 434 amino acids. Zhang et al. provided the 

first evidence linking variant PXR alleles to altered drug 

clearance. That study provided 38 single nucleotide 

polymorphisms (SNPs) and showed that several genetic 

variations within the PXR non-coding region were associated 

with either enhanced or reduced expression of PXR target 

genes, such as CYP3A4 and MDR1[90]. To date, more than 

300 hPXR SNPs have been deposited in the dbSNP database 
[91, 92]. Some of these are well investigated and their 

functional significance has been elucidated. These SNPs 

could affect protein expression, the ability to bind target 

DNA, or activation of PXR by ligands [85, 93].  

Many studies have been performed to identify whether 

genetic polymorphisms in regulatory NRs (CAR, HNF-4α, 

and PXR) can affect specific drug responses through changes 

in expression and/or activity of DMEs or drug transport 

genes. A study of 101 patients with breast cancer from three 

Asian ethnic groups showed genotypic variations in the PXR 

transcriptional regulator rs1523127 (A>C). CAR and HNF4α 

have not been associated with docetaxel or doxorubicin 

pharmacokinetics or pharmacodynamics [86]. However, PXR 

rs2276707 in combination with rs3814058 (T>C) in the 3′ 

untranslated region (UTR) lowered doxorubicin clearance in 

311 patients with breast cancer undergoing adjuvant 

treatment with doxorubicin and cyclophosphamide [94].  

Moon et al. suggested that the rs2472682 (A>C) intronic 

PXR SNP is significantly associated with stable warfarin 

doses in patients with prosthetic cardiac valves and that the 

combination of the rs2501873/rs3212198/rs2472682 

CAR/HNF-4α/PXR SNPs resulted in differences in the 

warfarin dose between grouped genotypes [95]. Other as yet 

undiscovered genetic drug disposition and toxicity factors 

should be studied further. These results suggest that PXR 

may have a pharmacogenetic effect and that it selectively 

affects activation of some drug but not others.  

Much of the recent research progress has explained the 

role of PXR. MicroRNAs are short (about 22 nucleotides in 

length) non-coding regulatory RNAs that control target genes 

by binding to complementary regions of transcripts, resulting 

in repression of their translation or mRNA degradation [96]. 

The possibility of miRNA-mediated PXR 

post-transcriptional regulation has emerged. Takagi et al. 

reported that miR-148a recognizes the complementary 

sequence in the 3′ UTR of hPXR mRNA, which leads to 

downregulation of the PXR protein and those of its target 

genes [97]. A haplotype analysis is more comprehensive and 

persuasive than single SNP studies. Oleson et al. identified 

an association between a haplotype of 10 SNPs located in the 

PXR 3′ UTR and clearance of midazolam by CYP3A [98]. 

Another study reported that doxorubicin clearance in patients 
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with breast cancer harboring the PXR*1B haplotype is 

significantly lower than clearance in patients with other 

haplotypes and that it is associated with reduced hepatic 

CYP3A4 mRNA expression by PXR [94]. 

Conclusions and Perspectives 

NRs have important roles regulating the expression of 

genes encoding DMEs and drug transporters resulting in 

altered clinical drug responses. Recent evidence has revealed 

that PXR may significantly contribute to the coordinated 

regulation of phase I, II, and III drug metabolism and 

transporters with other receptors, such as CAR and HNF4-α 

and/or transcription factors as well as coactivators. Various 

PXR regulated genes, such as CYP3As, CYP2Cs, and 

UGT1As, have been investigated for their possible roles 

influencing drug efficacy or toxicity.  

Many studies suggest that PXR polymorphisms and their 

specific haplotype clusters exist and that some affect 

individual variations in drug responses or DDIs. A better 

understanding and the relevance of NR pharmacogenetics 

may result in more effective and safer personalized 

therapeutic treatments. Further studies are necessary to 

identify the genetic mechanism by which PXR influences the 

pharmacological profiles of various drugs at the transcription 

and translation levels. These studies will highlight the way to 

improve personalized medicine. 
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