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Neurodegenerative diseases are linked to tauopathy as a result of cyclin dependent kinase 5 (cdk5) binding to its 

p25 activator instead of its p35 activator and becoming over-activated. The overactive complex stimulates the 

hyperphosphorylation of tau proteins, leading to neurofibrillary tangles (NFTs) and stunting axon growth and 

development. It is known that the sigma-1 receptor (Sig-1R), an endoplasmic reticulum chaperone, can be 

involved in axon growth by promoting neurite sprouting through nerve growth factor (NGF) and tropomyosin 

receptor kinase B (TrkB) [1, 2]. It has also been previously demonstrated that a Sig-1R deficiency impairs the 

process of neurogenesis by causing a down-regulation of N-methyl-D-aspartate receptors (NMDARs) [3]. The 

recent study by Tsai et al. sought to understand the relationship between Sig-1R and tauopathy [4]. It was 

discovered that the Sig-1R helps maintain proper tau phosphorylation and axon development by facilitating p35 

myristoylation and promoting p35 turnover. Neurons that had the Sig-1R knocked down exhibited shortened 

axons and higher levels of phosphorylated tau proteins compared to control neurons.  Here we discuss these 

recent findings on the role of Sig-1R in tauopathy and highlight the newly presented physiological consequences 

of the Sig-1R-lipid interaction, helping to understand the close relationship between lipids and 

neurodegeneration.  
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Neurodegenerative and CNS diseases, such as Alzheimer’s 

disease and Parkinson’s disease, are in part caused by 

disturbances in proper axonal maintenance and can be 

recognized by a decrease in axonal length [5-7]. There are a 

variety of factors that can impact axon length: for example, 

proteins such as glial cell-line derived neurotrophic factor 

(GDNF) and nerve growth factor (NGF) can influence axon 

length, branching, and growth kinetics [8], and the expression 

of ADP-ribosylation factor nucleotide-binding site opener 

(ARNO) and ADP-ribosylation factor 6 (ARF6) can result in 

enhanced axonal extension via downstream activation of 

phosphatidyl-inositol-4-phosphate 5-Kinase α [PI(4)P 

5-Kinase α] [9]. It has also been demonstrated that sphingolipid 

synthesis is necessary for axon growth [10].  

In normally functioning neurons, tau proteins stabilize the 

structure of microtubules, contributing to proper axon growth 
[11, 12]. In contrast, in CNS disorders it is characteristic for tau 

proteins to be highly-phosphorylated and form neurofibrillary 

tangles (NFTs), often in aggregates known as paired helical 
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filaments (PHFs) [13]. It has been proposed that 

hyperphosphorylation causes a functional loss of tau, 

preventing it from interacting with or stabilizing 

microtubules. This would result in axonal microtubules 

becoming destabilized and depolymerized and could cause 

neurons to degenerate [14]. It has also been suggested that 

abnormally phosphorylated tau proteins interact with normal 

tau proteins, making the latter unavailable to stabilize 

microtubules [15]. The kinases that phosphorylate tau proteins 

are generally divided into two categories: proline directed 

kinases and non-proline directed kinases [16]. Examples of 

proline directed kinases include GSK3B, cdk5, p38, MAP, 

and JNK, and examples of non-proline directed kinases 

include the tyrosine kinase fyn, MARK, PKA, PKC, and CK1 
[16-19].   

Important to this paper is the role of cyclin-dependent 

kinase 5 (cdk5), a proline directed kinase, in maintaining 

proper function of axonal maintenance by phosphorylating tau 

proteins. Cdk5 can be activated by p35 or p25 [20-25]. These 

two activators cause different responses: p35 causes 

“beneficial” activation of cdk5, whereas p25 causes 

“abnormal” activation of cdk5. P35 has a relatively short 

half-life; there exists a negative feedback loop in which the 

activity of the p35/cdk5 kinase complex leads to 

autophosphorylation and degradation of p35 and therefore 

inactivation [26]. In adult neurons it is more common for p35 to 

be cleaved by calpain into p25 [27-29]. P25 has a longer half-life 

than p35, so upon cleavage, p25 activates cdk5 and allows the 

complex to remain activated longer. In addition to prolonging 

activation of cdk5, p25 induces aberrant activation by 

releasing the complex from the membrane and allowing it to 

access additional substrates [30]. This overactive cdk5 complex 

can cause the hyperphosphorylation of tau proteins that leads 

to NFTs. 

The study led by Tsai et al. examined the role of the 

Sig-1R, an endoplasmic reticulum (ER) chaperone, in the 

process of tauopathy [4]. Tsai and colleagues ultimately 

learned that the Sig-1R associates with myristic acid, 

promoting p35 turnover and regulating tau phosphorylation. 

To confirm the hypothesis that the Sig-1R is involved in 

regulating tau phosphorylation, Tsai et al. first transfected 

neurons with Sig-1R siRNA (siSig-1R) or control siRNA 

(SiCon) to verify that the Sig-1R is associated with axon 

development. When compared to the control group, it was 

seen that neurons transfected with siSig-1R resulted in 

reduced axon length. This supports the idea that the Sig-1R 

chaperone is involved in the regulation of axonal length and 

density. It was also discovered that diminished Sig-1R 

expression in neurons resulted in a noticeable accumulation of 

PHFs, which are indicative of hyperphosphorylated tau 

proteins and ultimately affect axon length.  

When crude brain extracts from Sig-1R WT and KO mice 

were treated with CaCl2 to induce calpain activity, there was 

no difference in the cleavage of p35 to p25 between types of 

mice [4]. When taken together with data from treatments with 

the calpain inhibitor ALLM, these results show that the 

Sig-1R is not related to axonal length by affecting the 

conversion of p35 to p25 via calpain but rather by controlling 

the p35 degradation mainly through the proteasomal pathway.   

Work by Patrick et al. demonstrated that p35 is more 

abundant than p25 in the membrane fraction, which may 

indicate that p35 is normally located at the membrane [21]. 

Asada et al. furthered this notion and revealed that 

myristoylation regulates the membrane association of p35 [31]. 

Martin and Hayden recently reported that post-translational 

myristoylation (PTMyr) may not be limited to apoptosis and 

may play a role in cell survival, differentiation, and autophagy 
[32]. Tsai et al. determined that in the process of tauopathy, the 

Sig-1R binds myristic acid, which is used to myristoylate p35, 

and regulates the attachment of p35 to the membrane, perhaps 

by transferring myristic acid to p35 [4]. Once p35 is 

myristoylated and bound to the membrane it can activate 

cdk5. Minegishi and colleagues found that both proteasomal 

degradation and calpain cleavage of p35 are stimulated by 

membrane association, which is in turn mediated via 

myristoylation of the N-terminal p10 region of p35. 

Therefore, when p35 is bound to the membrane the total 

turnover rate (by both degradation and cleavage) is greater 

than when p35 is not bound to the membrane [30]. The Sig-1R, 

by binding myristic acid, effectively helps balance the rate at 

which p35 is cleaved into p25 or degraded by proteasomes, 

serving thus as a modulator between the “normal” and 

“abnormal” activation of cdk5 and the regulation of axonal 

development.   

By supplementing cells with exogenously added myristic 

acid, it was confirmed that myristic acid is important in 

regulating axon length and density [4]. In Sig-1R knockdown 

neurons, the addition of myristic acid eliminated irregular 

buildups of p35. Additionally, in WT and Sig-1R KO neurons, 

adding exogenous myristate not only amplified axon growth 

in the WT neurons but recovered the loss of axon length in KO 

neurons.   

Several authors have previously reported on the 

relationship between Sig-1R and lipids. Results from Hayashi 

and Su indicate that the Sig-1R regulates the dynamics and 

compartmentalization of lipids on the ER [33]. Hayashi and 

Fujimoto stated that the Sig-1R is located at the MAM at 

specific ceramide- and cholesterol-rich lipid microdomains 

and that these lipid raft microdomains play a role in the 

distribution of Sig-1R [34]. When these sets of data are 

analyzed together they appear to indicate a seemingly 
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reciprocal regulating relationship between the Sig-1R and 

lipids. On the one hand, it was found that changing the lipid 

membrane composition results in the translocation of Sig-1R, 

and it was thus proposed that the microdomains are used to 

anchor the Sig-1R to a location [34]. On the other hand, Palmer 

et al. provided evidence that in breast cancer cell lines the 

Sig-1R helps model and stabilize lipid rafts by binding to and 

inserting cholesterol into the membrane [35]. Slightly relevant 

to this relationship is a report that demonstrated that the 

Sig-1R associates with Insig in a 

25-hydroxycholesterol-dependent manner to form an ER 

associated degradation (ERAD) system at the membrane and 

that the degradation of the sphingolipid enzyme CGalT is 

regulated by this ERAD system possibly through an 

interaction between CGalT and sterols [36]. Although those 

previous studies have shown that Sig-1Rs are interacting with 

the lipids, this paper by Tsai et al. reported for the first time on 

the physiological significance of the Sig-1R-lipid interaction 
[4]. Thus, the new finding of Tsai et al. suggests that the 

Sig-1R apparently provides the myristic acid, by means of 

myristic acid “hitchhiking” on the Sig-1R that allows p35 to 

bind to the lipid membrane where p35 can accomplish the 

balanced or homeostatic activation of cdk5. This ultimately 

results in the regulation of normal axonal growth and 

maintenance. 
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