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Gq G protein-coupled receptor (Gq-GPCR) signaling in glial fibrillary acidic protein-expressing (GFAP+) glia is 
essential for neuron-glia interaction in the Central Nervous System (CNS). However, the exploration of the roles 
of Gq-GPCR signaling in peripheral GFAP+ glia has just begun. Our recent study showed that GFAP+ glia in the 
sympathetic ganglia, namely satellite glial cells (SGCs), positively modulate sympathetic-regulated cardiac 
functions following their Gq-GPCR activation. In this research highlight, we discuss the significance of satellite 
glial modulation of sympathetic nerve activity (SNA) in both physiology and in diseases. We also present a new 
experimental strategy for manipulating satellite glial signaling in the sympathetic ganglia using adeno-associated 
virus (AAV). The success of targeted viral transduction in ganglionic SGCs suggest a strong therapeutic 
potential of targeting sympathetic glia for the treatment of cardiovascular diseases (CVDs). 
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Background 

Chronic sympathoactivation, diagnosed via increased 
sympathetic nerve activity (SNA) [1], is correlated with 
hypertension in humans [2, 3] as well as in experimental 
models of hypertension [3]. Elevated SNA, particularly to the 
heart and kidneys, leads to neurogenic hypertension [3], 
which then contributes to multiple high-mortality diseases [1, 

3]. What deters us from developing novel and effective 
treatments for neurogenic cardiovascular diseases (CVDs) is 
the significant gap in our understanding of SNA and its 
complex regulation in vivo. 

As a key controller of the cardiovascular system, 
sympathetic nerves are tonically active in a synchronized and 

rhythmic fashion [1]. Brain-originating rhythmical SNA is 
amplified via sympathetic preganglionic neurons (SPGN) in 
the spinal cord and postganglionic neurons (PGN) in 
sympathetic ganglia (Fig. 1). In the CNS, GFAP+ astrocytes 
reside in close proximity to active synapses [4], and regulate 
neuronal activity [5] and signal processing [6] in an 
activity-dependent and circuit-specific manner [7]. Recent 
studies on enteric glia revealed novel mechanisms of GFAP+ 
glial regulation of gastrointestinal functions [8, 9], suggesting 
powerful neuromodulatory potential of GFAP+ glia in the 
peripheral nervous system.  

We began by testing the role of GFAP+ glia in the SNS in 
vivo. More specifically, we asked if the activation of 
Gq-GPCR signaling in sympathetic GFAP+ glia modulates 
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sympathetic regulated physiology in awake and free-moving 
animals. Glial Gq-GPCR signaling is essential to neuron-glia 
interaction in the CNS [10]. The challenge to studying the role 
of Gq-GPCR signaling in GFAP+ glia is that neurons and 
GFAP+ glia express overlapping GPCRs [11]. Traditional 
pharmacological stimulation leads to Gq-GPCR activation in 
both neurons and GFAP+ glia, causing difficulties in 
dissecting the contribution of GPCR activation specifically in 
GFAP+ glia. More recent optogenetic methods paired with 
targeted viral delivery can selectively elevate intracellular 
calcium in GFAP+ glia, mimicking one of the downstream 
signaling effects following Gq-GPCR activation in these 
cells. However, optogenetic manipulation in GFAP+ glia fails 
to activate the extensive network of Gq-GPCR signaling 
pathway in GFAP+ glia [11]. Moreover, the activation of 
optogenetic channels on GFAP+ glia leads to strong 
depolarization and acidification [12], which are not present in 
physiological glial Gq-GPCR activation. Therefore, we chose 
to use a pharmacogenetic approach in our studies to activate 
Gq-GPCR signaling in GFAP+ glia, by expressing 

engineered Gq-GPCRs only in GFAP+ glia but not neurons 
and other glial cells.   

A pharmacogenetic model for studying Gq-GPCR 
activation in GFAP+ glia in vivo 

In order to selectively activate Gq-GPCR signaling 
pathway in GFAP+ glia without activating other cells types, 
we took advantage of the newly developed Designer 
Receptors Exclusively Activated by Designer Drugs 
(DREADDs) [13, 14]. DREADDs are engineered by 
introducing point-mutations to endogenous muscarinic 
receptors (mAChR) [15]. DREADDs can only be activated by 
the otherwise bio-inert small molecule clozapine-N-oxide 
(CNO), and such activation can be blocked by mAChR 
antagonists [15]. We generated GFAP-hM3Dq transgenic 
mice, in which the Gq-coupled DREADD, hM3Dq [15], is 
exclusively expressed in GFAP+ glia in the CNS and the PNS 
[13]. hM3Dq expression was largely restricted in the nervous 
system, and no hM3Dq expression was detected on the target 

Figure 1. Cardiovascular adjustments with sympathetic activation. Increased sympathetic activity from the medulla 
constricts the carotid and splanchnic arteries as well as venous vessels, increasing vessel distension and resistance. 
Increased sympathetic drive also increases heart rate and contractility, which, together, increase cardiac output. Increased 
cardiac output and vascular resistance lead to increased blood pressure. Venoconstriction also contributes to increased 
cardiac preload. SPGN: spinal pre-ganglionic neurons; PGN: post-ganglionic neurons; EPI: epinephrine; NE: 
norepinephrine 
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organs, including the heart and blood vessels [13-15]. CNO can 
cross the blood brain barrier (BBB), making the 
GFAP-hM3Dq transgenic mice a unique model for assessing 
the role of Gq-GPCR activation in GFAP+ glia in vivo [16, 17]. 

Upon administration, CNO exclusively activates hM3Dq 
[18] in GFAP+ glia in the nervous system. hM3Dq does not 
exhibit intrinsic activity in the absence of CNO [19]; thus, 
there are no baseline differences in physiology or behavior 
between GFAP-hM3Dq mice and wild-type littermate 
controls [13]. In contrast, a single Intraperitoneal injection (i. 
p.) of CNO leads to significant increases in both heart rate 
and left ventricle contraction in GFAP-hM3Dq mice [14, 15]. 
Using the GFAP-hM3Dq transgenic model, we provided 
clear pharmacological evidence supporting that peripheral 
GFAP+ glia, specifically satellite glial cells (SGCs) in the 
sympathetic ganglia, positively modulate sympathetic 
released norepinephrine (NE) onto the heart, and in turn 
significantly increases cardiac contractility [14]. 

What are SGCs and what do they (presumably) do?  

Sympathetic ganglia consist of PGNs, axonal terminals 
from spinal SPGN, small intensely fluorescent cells (SIF), 
and GFAP+ SGCs. SGCs form peri-neuronal sheaths that 
tightly wrap around neuronal soma and axon-soma contacts 
in sympathetic ganglia [20]. SGCs effectively isolate 
individual PGNs [20] and comprise an effective chemical 
barrier for the whole ganglion [21], suggesting their potential 
role of governing PGN activity. Sympathetic SGCs also 
express machinery including inward rectifying potassium 
channels (Kir) [22-24], Ca2+-activated potassium channels [24], 
gap junctions [24, 25], neurotransmitter transporters [26-29], 
enzymes for neurotransmitter degradation and synthesis [30], 
and metabotropic neurotransmitter receptors [31, 32], further 
suggesting their important roles in modulating ganglionic 
neuronal activity and signaling processing. Recent studies in 
sensory ganglia revealed bi-directional purinergic signaling 
between ganglionic neurons and sensory SGCs [33, 34], 
indicating the potential contribution of SGC activation in 
neurogenic chronic pain. However, in sympathetic ganglia, 
the roles of SGCs in regulating local neuronal activity and 
sympathetically-driven physiology had not been reported 
prior to our study [35]. Our findings suggest that Gq-GPCR 
signaling in SGCs directly increases PGN activity in 
sympathetic ganglia and subsequently enhanced 
sympathetic-regulated physiology. This is the first report on 
the function of ganglionic SGCs in sympathetic ganglia. 

Our study also expanded the field of GFAP+ glia-neuron 
interaction from the CNS to the PNS. PNS GFAP+ glia 
consists of SGCs in all types of ganglia and non-myelinated 

schwann cells (NMSC; also called terminal schwann cells 
(TSC)) near the nerve endings in target organs (including 
muscles). However, the role of peripheral GFAP+ glia is 
largely overlooked. Our findings strongly argue that GFAP+ 
glia in the PNS can directly modulate the activity of local 
neural network, and exhibit profound influences on target 
organ functions following their Gq-GPCR activation. GFAP+ 
glia express many metabotropic neurotransmitter receptors 
that are GPCRs. The manipulation of Gq-GPCR signaling in 
peripheral GFAP+ glia may present a powerful tool to 
manipulate target organ function from the point of peripheral 
ganglia/nerve endings.  

Can we target SGC signaling in the sympathetic ganglia 
for treating CVDs? 

Within the growing population of hypertensive patients 
(global prevalence projected to reach one billion by 2025 
[36]), 30% have drug-resistant hypertension [37] and their 
disease progression can only be managed by clinical 
strategies to decrease SNA [2]. Clinical strategies of 
decreasing SNA includes central sympatholytics [38], deep 
brain stimulation [39], regional sympathectomy [40], and 
chronic carotid sinus baroreceptor stimulation [41]. These 
procedures often involve surgeries and device implantation, 
and they are generally irreversible. The safety and efficacy of 
these procedures are still being established within the clinical 
community. 

The causal link between hM3Dq activation in ganglionic 
satellite glia and the enhanced cardiac functions suggests 
strong therapeutic potential of selective manipulation of 
sympathetic SGC signaling in CVD treatment. In our study, 
we also found that chronic activation of satellite glial 
Gq-GPCR signaling led to significant decreases in blood 
pressure in female GFAP-hM3Dq mice, suggesting a strong 
link between sympathetic SGC Gq-GPCR signaling and 
blood pressure regulation [14]. However, can we manipulate 
Gq-GPCR signaling exclusively in sympathetic SGCs in 
vivo? Recently, we have optimized protocols for 1) targeted 
AAV viral injections into superior cervical ganglia and 2) 
AAV-mediated gene expression for high-efficiency and high 
tropism towards SGCs in superior cervical ganglia. The 
injection technique and the AAV viral vector enable selective 
manipulation of SGC signaling pathways in vivo (Fig. 2). 

In brief, naïve C57BL/6 mice (in both sexes) were 
maintained under general anesthesia using isoflurane. For 
each mouse, a ventral, medial incision at the neck was made 
and tissue was separated until the esophagus of the mouse 
was visible. The muscles and glands were carefully pushed to 
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the side to expose the superior cervical ganglia on both sides. 
For each ganglion, an injector apparatus was lowered into the 
ganglion using standard stereotaxic procedure. After 
puncturing the connective tissue around the ganglion, 500 nL 
of AAV vectors were infused into each superior cervical 
ganglion over 5 minutes at a rate of 0.1 µL per minute. The 
needle was kept in for another five minutes before removed. 
After both ganglia were injected, the tissues were moved 
back to their original place and the incision was closed with 
Vet Bond and Liquid Bandage. Lidocaine and ciprofloxacin 
were injected during the post-surgery recovery to manage 
pain and potential infections. The protocol for this procedure 
is approved and were conducted in accordance with 
Institutional Animal Care and Use Committee (IACUC) 
guidelines at University of North Carolina at Chapel Hill.  

We chose AAV8 serotype for its relatively higher tropism 
towards glial cells [42] and low-probability of inducing innate 
immune responses [43]. Our preliminary data demonstrated 
that injecting AAV8-GFAP-Cre (1.0 x 1013 vg/μL) into the 
superior cervical ganglia of Rosa26-Ai9 Cre reporter mice 
[44] led to tdTomato expression in the majority of SGCs, with 
no apparent neuronal transduction (Fig. 2). Furthermore, 
naïve mice injected with AAV8-GFAP-hM3Dq-tdTomato 
(0.5~1.5 x 1013 vg/μL) responded to i. p. CNO administration 
with increases in left ventricle ejection fraction and fraction 
shortening that were comparable to those observed in 
GFAP-hM3Dq mice (Fig. 3). These data strongly 
demonstrate our ability to use AAV-mediated viral approach 
for selective manipulation of SGC signaling. 

Figure 2. Tdtomato expression in SGCs, but not PGNs, in the superior cervical ganglia of Rosa26-Ai9 Cre 
reporter mice, 4 weeks after AAV8-GFAP-Cre injection. Scale bar: 20 μm. 
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Sensory SGCs have been targeted for gene therapies 
treating chronic pain [45-47]. Direct injections of adenoviral 
vectors into the rat trigeminal ganglia [46] and rat dorsal root 
ganglia [48] leads to a sustained expression of the delivered 
genes in SGCs. Adenoviral transduction of glutamic acid 
decarboxylase (GAD) into SGCs resulted in glial production 
of GABA and reduced pain behavior in vivo [46], suggesting a 
strong potential for altering ganglionic output by 
manipulating SGC signaling in the sensory ganglia. Our 
preliminary data strongly argues that targeted AAV injection 
into sympathetic ganglia leads to sustained and stable 
expression of hM3Dq in sympathetic SGCs without any 
detectable expression in PGNs. Injections into stellate 
ganglia, the sympathetic ganglia that innervate heart in 
human, are performed routinely in patients to control 
sympathetic output [49]. Future pre-clinical research is 
required to determine the long-term effect of overexpressing 
engineered Gq-GPCRs in SGCs on cardiovascular 
physiology, as well as to assess the long-term effects of 
activating satellite glial Gq-GPCR signaling on 
cardiovascular functions. 
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